Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Ivan Jukic x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Danica Janicijevic, Ivan Jukic, Jonathon Weakley, and Amador García-Ramos

Purpose: To compare the accuracy of nine 1-repetition maximum (1RM) prediction methods during the paused and touch-and-go bench press exercises performed in a Smith machine. Method: A total of 86 men performed 2 identical sessions (incremental loading test until reaching the 1RM followed by a set to failure) in a randomized order during the paused and touch-and-go bench press exercises. Individualized load–velocity relationships were modeled by linear and polynomial regression models considering 4 loads (45%–60%–75%–90% of 1RM) (multiple-point methods) and considering only 2 loads (45%–90% of 1RM) by a linear regression (2-point method). Three minimal velocity thresholds were used: the general velocity of 0.17 m·s−1 (general velocity of the 1RM [V1RM]), the velocity obtained when lifting the 1RM load (individual V1RM), and the velocity obtained during the last repetition of a set to failure. Results: The 1RM prediction methods were generally valid (range: r = .96–.99, standard error of the estimate = 2.8–4.9 kg or 4.6%–8.0% of 1RM). The multiple-point linear method (2.79 [2.29] kg) was more precise than the multiple-point polynomial method (3.54 [3.31] kg; P = .013), but no significant differences were observed when compared with the 2-point method (3.09 [2.66] kg, P = .136). The velocity of the last repetition of a set to failure (3.47 [2.97] kg) was significantly less precise than the individual V1RM (2.91 [2.75] kg, P = .009) and general V1RM (3.00 [2.65] kg, P = .010). Conclusions: Linear regression models and a general minimal velocity threshold of 0.17 m·s−1 should be recommended to obtain a quick and precise estimation of the 1RM during the bench press exercise performed in a Smith machine.

Restricted access

Amador García-Ramos, Jonathon Weakley, Danica Janicijevic, and Ivan Jukic

Purpose: To explore the effect of several methodological factors on the number of repetitions performed before and after reaching certain velocity loss thresholds (VLTs). Method: Fifteen resistance-trained men (bench press 1-repetition maximum = 1.25 [0.16] kg·kg−1) performed with maximum intent a total of 182 sets (77 short sets [≤12 repetitions] and 105 long sets [>12 repetitions]) leading to failure during the Smith machine bench press exercise. Fifteen percent, 30%, and 45% VLTs were calculated, considering 2 reference repetitions (first and fastest repetitions) and 2 velocity variables (mean velocity [MV] and peak velocity [PV]). Results: The number of repetitions performed before reaching all VLTs were affected by the reference repetition and velocity variable (P ≤ .001). The fastest MV and PV during the short sets (75.3%) and PV during the long sets (72.4%) were predominantly observed during the first repetition, while the fastest MV during long sets was almost equally distributed between the first (37.1%) and second repetition (40.0%). Failure occurred before reaching the VLTs more frequently using PV (4, 8, and 33 occasions for 15%, 30%, and 45% VLTs, respectively) than MV (only 1 occasion for the 45% VLT). The participants rarely produced a velocity output above a VLT once this threshold was exceeded for the first time (≈10% and 30% of occasions during the short and long sets, respectively). Conclusions: The reference repetition and velocity variable are important factors to consider when implementing VLTs during resistance training. The fastest repetition (instead of the first repetition) and MV (instead of PV) are recommended.

Restricted access

Harry G. Banyard, James J. Tufano, Jonathon J.S. Weakley, Sam Wu, Ivan Jukic, and Kazunori Nosaka

Purpose: To compare the effects of velocity-based training (VBT) and 1-repetition-maximum (1RM) percentage-based training (PBT) on changes in strength, loaded countermovement jump (CMJ), and sprint performance. Methods: A total of 24 resistance-trained males performed 6 weeks of full-depth free-weight back squats 3 times per week in a daily undulating format, with groups matched for sets and repetitions. The PBT group lifted with fixed relative loads varying from 59% to 85% of preintervention 1RM. The VBT group aimed for a sessional target velocity that was prescribed from pretraining individualized load–velocity profiles. Thus, real-time velocity feedback dictated the VBT set-by-set training load adjustments. Pretraining and posttraining assessments included the 1RM, peak velocity for CMJ at 30%1RM (PV-CMJ), 20-m sprint (including 5 and 10 m), and 505 change-of-direction test (COD). Results: The VBT group maintained faster (effect size [ES] = 1.25) training repetitions with less perceived difficulty (ES = 0.72) compared with the PBT group. The VBT group had likely to very likely improvements in the COD (ES = −1.20 to −1.27), 5-m sprint (ES = −1.17), 10-m sprint (ES = −0.93), 1RM (ES = 0.89), and PV-CMJ (ES = 0.79). The PBT group had almost certain improvements in the 1RM (ES = 1.41) and possibly beneficial improvements in the COD (ES = −0.86). Very likely favorable between-groups effects were observed for VBT compared to PBT in the PV-CMJ (ES = 1.81), 5-m sprint (ES = 1.35), and 20-m sprint (ES = 1.27); likely favorable between-groups effects were observed in the 10-m sprint (ES = 1.24) and nondominant-leg COD (ES = 0.96), whereas the dominant-leg COD (ES = 0.67) was possibly favorable. PBT had small (ES = 0.57), but unclear differences for 1RM improvement compared to VBT. Conclusions: Both training methods improved 1RM and COD times, but PBT may be slightly favorable for stronger individuals focusing on maximal strength, whereas VBT was more beneficial for PV-CMJ, sprint, and COD improvements.

Restricted access

Jesualdo Cuevas-Aburto, Ivan Jukic, Jorge Miguel González-Hernández, Danica Janicijevic, Paola Barboza-González, Luis Javier Chirosa-Ríos, and Amador García-Ramos

Purpose: To compare the effects of 2 upper-body strength-training programs differing in set configuration on bench press 1-repetition maximum (BP1RM), bench press throw peak velocity against 30 kg (BPT30), and handball throwing velocity. Methods: Thirty-five men were randomly assigned to a traditional group (TRG; n = 12), rest redistribution group (RRG; n = 13), or control group (n = 10). The training program was conducted with the bench press exercise and lasted 6 weeks (2 sessions per week): TRG—6 sets × 5 repetitions with 3 minutes of interset rest; RRG—1 set × 30 repetitions with 31 seconds of interrepetition rest. The total rest period (15 min) and load intensity (75% 1RM) were the same for both experimental groups. Subjects performed all repetitions at maximal intended velocity, and the load was adjusted on a daily basis from velocity recordings. Results: A significant time × group interaction was observed for both BP1RM and BPT30 (P < .01) due to the higher values observed at posttest compared with pretest for TRG (effect size [ES] = 0.77) and RRG (ES = 0.56–0.59) but not for the control group (ES ≤ 0.08). The changes in BP1RM and BPT30 did not differ between TRG and RRG (ES = 0.04 and 0.05, respectively). No significant differences in handball throwing velocity were observed between the pretest and posttest (ES = 0.16, 0.22, and 0.02 for TRG, RRG, and control group, respectively). Conclusions: Resistance-training programs based on not-to-failure traditional and rest redistribution set configurations induce similar changes in BP1RM, BPT30, and handball throwing velocity.