The field of exercise physiology has enjoyed tremendous growth in the past 40 years. With its foundations in the natural sciences, it is an interdisciplinary field that is highly relevant to human performance and health. The focus of this review is on highlighting new approaches, knowledge, and opportunities that have emerged in exercise physiology over the last four decades. Key among these is the adoption of advanced technologies by exercise physiologists to address fundamental research questions, and the expansion of research topics to range from molecular to organismal, and population scales in order to clarify the underlying mechanisms and impact of physiological responses to exercise in health and disease. Collectively, these advances have ensured the position of the field as a partner in generating new knowledge across many scientific and health disciplines.
Search Results
You are looking at 1 - 5 of 5 items for
- Author: Jane A. Kent x
- Refine by Access: All Content x
Exercise Physiology From 1980 to 2020: Application of the Natural Sciences
Jane A. Kent and Kate L. Hayes
Comparative Assessment of Novel Sailing Trapeze Harness Designs
Susan J. Hall, Jane A. Kent, and Vern R. Dickinson
Prolonged trapezing during sailing often results in low back pain among elite sailors. Modifications of the trapeze harness have been proposed as one approach to ameliorating this problem. To evaluate six harnesses incorporating novel features that had tested well during pilot work, myoelectric activity was monitored at C5, T6, and L5 levels of sacrospinalis and at an abdominal site while five elite sailors wore the harnesses. Integrated EMG (IEMG) values were stored by a microcomputer at periodic intervals during each 10-min trial, as each subject maintained a static horizontal trapezing position in the laboratory. Factorial repeated-measures ANOVA indicated no change in IEMG values over time, but significant (p<0.001) differences among harnesses at all four electrode sites. Features of trapeze harness design that appear to minimize muscular tension include heavy, rigid padding throughout the harness, full-length shoulder-to-buttocks support of the trunk, and adjustable leg strap supports as opposed to a crotch strap.
The Roles of Sex and Physical Activity in Gait and Knee Extensor Function With Age
Jocelyn F. Hafer, Mark S. Miller, Jane A. Kent, and Katherine A. Boyer
Older females experience higher rates of disability than males, potentially due to sex-specific differences in gait and muscle function. The authors evaluated the effects of age and physical activity (PA) on gait mechanics and knee extensor muscle function in males and females. Three groups of 20 individuals (each 10 females) participated: young (21–35 y) and highly and less active older (55–70 y) adults. Knee extensor strength and joint mechanics during preferred speed gait were collected before and after 30 minutes of walking. Age by sex and PA by sex interactions indicated older and less active older females had lower concentric knee extensor muscle power and larger hip extension moments than males. After 30 minutes of walking, older less active adults had larger decreases in knee extensor power than their highly active older counterparts, and older adults of both sexes had decreases in ankle dorsiflexion moments while young adults did not. These results suggest that older, particularly less active, adults are susceptible to knee extensor muscle fatigue from moderate activity. For older adults, high levels of PA may be necessary to preserve gait mechanics in response to a bout of exercise. This new information may be important for targeting interventions in at-risk older adults.
Gait Initiation in Multiple Sclerosis
Jebb G. Remelius, Joseph Hamill, Jane Kent-Braun, and Richard E.A. Van Emmerik
Individuals with multiple sclerosis (MS) often have poor balance control that is especially apparent during dynamic tasks such as gait initiation (GI). The purpose of this study was to investigate how balance symptoms due to MS alter spatiotemporal variables, coordination, and temporal margins within the stability boundary during gait initiation. Twelve women with MS (Expanded Disability Status Scale [EDSS] mean = 4.0, SD = 1.4) and 12 women without MS (control group) initiated gait at their preferred speed. MS participants attained a slower anterior velocity because of smaller anterior center of mass displacements and took longer to complete the initiation of gait than the control group. MS participants exhibited a smaller posterior shift in center of pressure during GI and stepped with a longer dual support time than the control group. However, these changes may be due to differences in initiation velocity. Relative timing analysis showed invariance in postural and locomotor phases of gait initiation between groups. The MS group showed different coordination between anterior-posterior and medio-lateral center of pressure components while increasing temporal margins to the posterior and lateral stability boundaries in comparison with the control group. Overall, during gait initiation at their preferred speed the MS participants adopted a functional strategy that produces lower speed and reduced proximity to the stability boundaries prior to stepping.
Muscle Torque–Velocity Relationships and Fatigue With Reduced Knee Joint Range of Motion in Young and Older Adults
Zoe H. Smith, R. Anthony Martin, Erica Casto, Carol Bigelow, Michael A. Busa, and Jane A. Kent
The purpose of this study was to evaluate the influence of knee joint range of motion (RoM) on the torque–velocity relationship and fatigue in the knee extensor muscles of 7 young (median = 26 y) and 7 older (68 y) adults. Each leg was assigned a RoM (35° or 75°) over which to perform a torque–velocity protocol (maximal isokinetic contractions, 60–300°·s−1) and a fatigue protocol (120 maximal contractions at 120°·s−1, 0.5 Hz). Six older participants were unable to reach 300°·s−1 over 35°. Therefore, the velocity eliciting 75% of peak torque at 60°·s−1 (V 75, °·s−1) was calculated for each RoM from a fit of individual torque–velocity curves (60–240°·s−1), and ΔV 75 (35°–75°) was determined. Fatigue (final torque/initial torque) was used to calculate Δfatigue (35°–75°). ΔV 75 was not different from 0 in young (−28.3°·s−1 [−158.6 to 55.7], median [range], P = .091) or older (−18.5°·s−1 [−95.0 to 23.9], P = .128), with no difference by age (P = .710). In contrast, fatigue was greater for 75° in young (Δfatigue = 25.9% [17.5–30.3], P = .018) and older (17.2% [11.9–52.9], P = .018), with no effect of age (P = .710). These data indicate that, regardless of age, RoM did not alter the torque–velocity relationship between 60 and 240°·s−1, and fatigue was greater with a larger RoM.