Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Janet L. Ronsky x
Clear All Modify Search
Restricted access

Steven K. Boyd and Janet L. Ronsky

Abnormal joinl coniact mechanics in the knee joint due to loss of anterior cruciate ligament (ACL) are often speculated to play an important role in the development of osteoarthritis. In this study, a technique was developed so that contact of the patellofemoral (PF) joint could be estimated in situ using a mathematical contact model. The model inputs were PF joint kinematics measured in situ and the PF joint surface topology. Due to the small size of the joint, techniques for measuring joinl kinematics and surface topology with sufficient precision were paramount so that reasonable estimates of joint contact could be obtained. The sensitivity of the model to measurement errors was examined. Differences in joint contact between ACL-intacl and ACL-deficient conditions were analyzed. Statistically significant differences in contact areas were detected between the intact and ACL-deficient knee joint, and different coniact areas and locations as a function of joint angle and quadriceps muscular stimulation.

Restricted access

Bradley J. Monteleone, Janet L. Ronsky, Willem H. Meeuwisse and Ronald F. Zernicke

Ankle function is frequently measured using static or dynamic tasks in normal and injured patients. The purpose of this study was to develop a novel task to quantify ankle dynamics and muscle activity in normal subjects. Twelve subjects with no prior ankle injuries participated. Video motion analysis cameras, force platforms, and an EMG system were used to collect data during a lateral hop movement task that consisted of multiple lateral-medial hops over an obstacle. Mean (SD) inversion ankle position at contact was 4.4° (4.0) in the medial direction and –3.5° (4.4) in the lateral direction; mean (SD) tibialis anterior normalized muscle activity was 0.11 (0.08) in the medial direction and 0.16 (0.13) in the lateral direction. The lateral hop movement was shown to be an effective task for quantifying ankle kinematics, forces, moments, and muscle activities in normal subjects. Future applications will use the lateral hop movement to assess subjects with previous ankle injuries in laboratory and clinical settings.