Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Javier T. Gonzalez x
Clear All Modify Search
Restricted access

Eva Piatrikova, Ana C. Sousa, Javier T. Gonzalez and Sean Williams

Purpose: To assess the concurrent and predictive validity of the 3-minute all-out test (3MT) against conventional methods (CM) of determining critical speed (CS) and curvature constant (D′) and to examine the test–retest reliability of the 3MT in highly trained swimmers. Methods: Thirteen highly trained swimmers (age 16 [2] y, weight 64.7 [8.5] kg, height 1.76 [0.07] m) completed 4 time trials and two 3MTs over 2 wk. The distance–time (DT) and speed–1/time (1/T) models were used to determine CS and D′ from 4 time trials. CS3MT and D3MT were determined as the mean speed in the final 30 s of 3MT and as the speed–time integral above CS, respectively. Results: CS3MT (1.33 [0.06] m·s−1) did not differ from CSCM (1.33 [0.06] m·s−1, P > .05) and correlated nearly perfectly with CSCM (r = .95, P < .0001). D3MT (19.50 [3.52] m) was lower than DDT (23.30 [6.24] m, P < .05) and D1/T (22.15 [5.75] m, P = .09). Correlations between D3MT and DCM were very large (r = .79, P = .002). CS and D′ between the two 3MT trials were not different (CS mean change = −0.009 m·s−1, P = .102; D′ mean change = 0.82 m, P = .221). Correlations between the two 3MT trials were nearly perfect and very large for CS (r = .97) and D′ (r = .87, P < .05), respectively, with coefficients of variation of 0.9% for CS and 9.1% for D′. Conclusion: The 3MT is a valid protocol for estimation of CS and produces high test–retest reliability for CS and D′ in highly trained swimmers.

Restricted access

Javier T. Gonzalez, Martin J. Barwood, Stuart Goodall, Kevin Thomas and Glyn Howatson

Unaccustomed eccentric exercise using large muscle groups elicits soreness, decrements in physical function and impairs markers of whole-body insulin sensitivity; although these effects are attenuated with a repeated exposure. Eccentric exercise of a small muscle group (elbow flexors) displays similar soreness and damage profiles in response to repeated exposure. However, it is unknown whether damage to small muscle groups impacts upon whole-body insulin sensitivity. This pilot investigation aimed to characterize whole-body insulin sensitivity in response to repeated bouts of eccentric exercise of the elbow flexors. Nine healthy males completed two bouts of eccentric exercise separated by 2 weeks. Insulin resistance (updated homeostasis model of insulin resistance, HOMA2-IR) and muscle damage profiles (soreness and physical function) were assessed before, and 48 h after exercise. Matsuda insulin sensitivity indices (ISIMatsuda) were also determined in 6 participants at the same time points as HOMA2-IR. Soreness was elevated, and physical function impaired, by both bouts of exercise (both p < .05) but to a lesser extent following bout 2 (time x bout interaction, p < .05). Eccentric exercise decreased ISIMatsuda after the first but not the second bout of eccentric exercise (time x bout interaction p < .05). Eccentric exercise performed with an isolated upper limb impairs whole-body insulin sensitivity after the first, but not the second, bout.

Restricted access

Edward A. Gray, Thomas A. Green, James A. Betts and Javier T. Gonzalez

During short-term recovery, postexercise glucose–fructose coingestion can accelerate total glycogen repletion and augment recovery of running capacity. It is unknown if this advantage translates to cycling, or to a longer (e.g., overnight) recovery. Using two experiments, the present research investigated if postexercise glucose–fructose coingestion augments exercise capacity following 4-hr (short experiment; n = 8) and 15-hr (overnight experiment; n = 8) recoveries from exhaustive exercise in trained cyclists, compared with isocaloric glucose alone. In each experiment, a glycogen depleting exercise protocol was followed by a 4-hr recovery, with ingestion of 1.5 or 1.2 g·kg−1·hr−1 carbohydrate in the short experiment (double blind) and the overnight experiment (single blind), respectively. Treatments were provided in a randomized order using a crossover design. Four or fifteen hours after the glycogen depletion protocol, participants cycled to exhaustion at 70% W max or 65% W max in the short experiment and the overnight experiment, respectively. In both experiments there was no difference in substrate oxidation or blood glucose and lactate concentrations between treatments during the exercise capacity test (trial effect, p > .05). Nevertheless, cycling capacity was greater in glucose + fructose versus glucose only in the short experiment (28.0 ± 8.4 vs. 22.8 ± 7.3 min, d = 0.65, p = .039) and the overnight experiment (35.9 ± 10.7 vs. 30.6 ± 9.2 min, d = 0.53, p = .026). This is the first study to demonstrate that postexercise glucose–fructose coingestion enhances cycling capacity following short-term (4 hr) and overnight (15 hr) recovery durations. Therefore, if multistage endurance athletes are ingesting glucose for rapid postexercise recovery then fructose containing carbohydrates may be advisable.

Restricted access

Eva Piatrikova, Nicholas J. Willsmer, Ana C. Sousa, Javier T. Gonzalez and Sean Williams

Purpose: To monitor physiological, technical, and performance responses to individualized high-intensity interval training (HIIT) prescribed using the critical speed (CS) and critical stroke rate (CSR) concepts in swimmers completing a reduced training volume program (≤30 km·wk−1) for 15 weeks. Methods: Over the 15-week period, 12 highly trained swimmers (age 16 [1] y, height 179 [8] cm, weight 66 [8] kg) completed four 3-minute all-out tests to determine CS and the finite capacity to work above CS (D′), and four 200-m tests at CS to establish a CSR estimate. Combining CS and D′, 2 HIIT sessions designed as 5 × 3-minute intervals depleting 60% of D′ and 3 × 3.5-minute intervals depleting 80% of D′ were prescribed once per week, respectively. An additional HIIT session was prescribed using CS and CSR as 10 × 150 m or 200 m at CS with 2 cycles per minute lower stroke rate than the CSR estimate. Additional monitored variables included peak speed, average speed for 150 seconds (speed150s) and 180 seconds (speed180s), competition performance and stroke length (SL), stroke count (SC), and stroke index (SI) adopted at CS. Results: At the end of the intervention, swimmers demonstrated faster CS (mean change ± 90% confidence limits: +5.4 ± 1.6%), speed150s (+2.5 ± 0.9%), speed180s (+3.0 ± 0.9%), and higher stroke rate (+6.4 ± 3.0%) and stroke index (+4.2 ± 3.6%). D′ was reduced (−25.2 ± 7.5%), whereas peak speed, SL, and SC changed only trivially. The change in the swimmers’ personal best times in the first and second main event was −1.2 ± 1.3% and −1.6 ± 0.9%, respectively. Conclusion: HIIT prescribed based on the CS and CSR concepts was associated with improvements in several physiological, technical, and performance parameters in highly trained swimmers while utilizing time- and resource-efficient approach. This was achieved despite a ≥25% reduction in training volume.

Restricted access

Campbell Menzies, Michael Wood, Joel Thomas, Aaron Hengist, Jean-Philippe Walhin, Robbie Jones, Kostas Tsintzas, Javier T. Gonzalez and James A. Betts

The timing of carbohydrate ingestion and how this influences net muscle glycogen utilization and fatigue has only been investigated in prolonged cycling. Past findings may not translate to running because each exercise mode is distinct both in the metabolic response to carbohydrate ingestion and in the practicalities of carbohydrate ingestion. To this end, a randomized, cross-over design was employed to contrast ingestion of the same sucrose dose either at frequent intervals (15 × 5 g every 5 min) or at a late bolus (1 × 75 g after 75 min) during prolonged treadmill running to exhaustion in six well-trained runners (V˙O2max 61 ± 4 ml·kg−1·min−1). The muscle glycogen utilization rate was lower in every participant over the first 75 min of running (Δ 0.51 mmol·kg dm−1·min−1; 95% confidence interval [−0.02, 1.04] mmol·kg dm−1·min−1) and, subsequently, all were able to run for longer when carbohydrate had been ingested frequently from the start of exercise compared with when carbohydrate was ingested as a single bolus toward the end of exercise (105.6 ± 3.0 vs. 96.4 ± 5.0 min, respectively; Δ 9.3 min, 95% confidence interval [2.8, 15.8] min). A moderate positive correlation was apparent between the magnitude of glycogen sparing over the first 75 min and the improvement in running capacity (r = .58), with no significant difference in muscle glycogen concentrations at the point of exhaustion. This study indicates that failure to ingest carbohydrates from the outset of prolonged running increases reliance on limited endogenous muscle glycogen stores—the ergolytic effects of which cannot be rectified by subsequent carbohydrate ingestion late in exercise.

Open access

James A. Betts, Javier T. Gonzalez, Louise M. Burke, Graeme L. Close, Ina Garthe, Lewis J. James, Asker E. Jeukendrup, James P. Morton, David C. Nieman, Peter Peeling, Stuart M. Phillips, Trent Stellingwerff, Luc J.C. van Loon, Clyde Williams, Kathleen Woolf, Ron Maughan and Greg Atkinson

Open access

Salomé Aubert, Joel D. Barnes, Chalchisa Abdeta, Patrick Abi Nader, Ade F. Adeniyi, Nicolas Aguilar-Farias, Dolores S. Andrade Tenesaca, Jasmin Bhawra, Javier Brazo-Sayavera, Greet Cardon, Chen-Kang Chang, Christine Delisle Nyström, Yolanda Demetriou, Catherine E. Draper, Lowri Edwards, Arunas Emeljanovas, Aleš Gába, Karla I. Galaviz, Silvia A. González, Marianella Herrera-Cuenca, Wendy Y. Huang, Izzeldin A.E. Ibrahim, Jaak Jürimäe, Katariina Kämppi, Tarun R. Katapally, Piyawat Katewongsa, Peter T. Katzmarzyk, Asaduzzaman Khan, Agata Korcz, Yeon Soo Kim, Estelle Lambert, Eun-Young Lee, Marie Löf, Tom Loney, Juan López-Taylor, Yang Liu, Daga Makaza, Taru Manyanga, Bilyana Mileva, Shawnda A. Morrison, Jorge Mota, Vida K. Nyawornota, Reginald Ocansey, John J. Reilly, Blanca Roman-Viñas, Diego Augusto Santos Silva, Pairoj Saonuam, John Scriven, Jan Seghers, Natasha Schranz, Thomas Skovgaard, Melody Smith, Martyn Standage, Gregor Starc, Gareth Stratton, Narayan Subedi, Tim Takken, Tuija Tammelin, Chiaki Tanaka, David Thivel, Dawn Tladi, Richard Tyler, Riaz Uddin, Alun Williams, Stephen H.S. Wong, Ching-Lin Wu, Paweł Zembura and Mark S. Tremblay

Background: Accumulating sufficient moderate to vigorous physical activity is recognized as a key determinant of physical, physiological, developmental, mental, cognitive, and social health among children and youth (aged 5–17 y). The Global Matrix 3.0 of Report Card grades on physical activity was developed to achieve a better understanding of the global variation in child and youth physical activity and associated supports. Methods: Work groups from 49 countries followed harmonized procedures to develop their Report Cards by grading 10 common indicators using the best available data. The participating countries were divided into 3 categories using the United Nations’ human development index (HDI) classification (low or medium, high, and very high HDI). Results: A total of 490 grades, including 369 letter grades and 121 incomplete grades, were assigned by the 49 work groups. Overall, an average grade of “C-,” “D+,” and “C-” was obtained for the low and medium HDI countries, high HDI countries, and very high HDI countries, respectively. Conclusions: The present study provides rich new evidence showing that the situation regarding the physical activity of children and youth is a concern worldwide. Strategic public investments to implement effective interventions to increase physical activity opportunities are needed.