Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Jeff S. Volek x
Clear All Modify Search
Restricted access

Janne Sallinen, Arto Pakarinen, Mikael Fogelholm, Elina Sillanpää, Markku Alen, Jeff S. Volek, William J. Kraemer and Keijo Häkkinen

This study examined the effects of strength training and diet on serum basal hormone concentrations and muscle mass in aging women. Fifty-one women age 49 to 74 y were divided into two groups: strength training and nutritional counseling (n = 25), and strength training (n = 26). Both groups performed strength training twice a week for 21 wk. Nutritional counseling was given to attain sufficient energy and protein intake and recommended intake of fat and fiber. We found that the cross-sectional area of the quadriceps femoris increased by 9.5 ± 4.1% in the nutritional counseling group versus 6.8 ± 3.5% in the strength training only group after training (P < 0.052). Nutritional counseling evoked dietary changes such as increases in the proportion of energy from protein and the ratio of poly-unsaturated and saturated fatty acids. Strength training increased testosterone and testosterone/sex hormone-binding globulin ratio after the first half of training, but these returned to baseline values at the end of the entire training period. Changes in serum basal hormone concentrations did not differ between the groups. Our results support the conclusion that nutritional counseling can contribute to the increase in the muscle cross-sectional area during prolonged strength training in aging women.

Restricted access

Jeff S. Volek, Noel D. Duncan, Scott A. Mazzetti, Margot Putukian, Ana L. Gómez and William J. Kraemer

In order to examine the effects of heavy resistance training and the influence of creatine supplementation on nonperformance measures of health status, 19 healthy resistance-trained men were matched and then randomly assigned in a double-blind fashion to either a creatine (n = 10) or placebo (n = 9) group. Periodized heavy resistance training was performed 3—4 times per week for 12 weeks. During the first week of training, creatine subjects consumed 25 g creatine monohydrate per day, while the placebo group ingested an equal number of placebo capsules. Five grams of supplement per day was consumed for the remainder of the study. Body composition, fasting serum creatinine, lipo-proteins and triglycerides, and reported changes in body function were determined prior to and after 12 weeks of training and supplementation. After training, significant increases in body mass and fat-free mass were greater in creatine (5.2 and 4.3 kg, respectively) than placebo (3.0 and 2.1 kg. respectively) subjects. There was no change in percent body fat. Dietary energy and macronutrient distribution was not significantly different during Weeks 1 and 12. Serum creatinine was significantly elevated in creatine subjects after 1(11.6%) and 12 weeks (13.8%); however, values were within normal limits for healthy men. There were no effects of training or supplementation on serum total cholesterol, HDL-cholesterol, LDL-cholesterol. or triglycerides. In healthy men, a 12-week heavy resistance training program, with or without creatine supplementation, did not significantly influence serum lipid profiles, subjective reports of body functioning, or serum creatinine concentrations.

Restricted access

Kate Sanders, Carl M. Maresh, Kevin D. Ballard, Brent C. Creighton, J. Luke Pryor, William J. Kraemer, Jeff S. Volek and Jeff M. Anderson

Compared with their physically active peers, overweight sedentary postmenopausal women demonstrate impaired vascular endothelial function (VEF), substantially increasing the risk for cardiovascular disease (CVD). Habitual exercise is associated with improved VEF and reduced CVD risk. The purpose of this study was to compare brachial artery flow mediated dilation (FMD), a measure of VEF, in overweight, postmenopausal women who were physically active (EX: n = 17, BMI: 29.3 ± 3.11 kg/m2) or sedentary (CON: n = 8, BMI: 30.3 ± 3.6 kg/m2). Anthropomorphic measures were similar in both groups (P > .05). FMD was significantly greater in EX (10.24 ± 2.36%) versus CON (6.60 ± 2.18%) (P < .002). FMD was not significantly correlated with estimated VO2max (EX: r = .17, P = .52; CON: r = .20, P = .60) but was negatively associated with percent body fat in EX group (EX: r = -.48, P = .05; CON: r = .41, P = .31). These results are consistent with the positive effects of habitual exercise on VEF in overweight postmenopausal women.

Restricted access

Jesse Fleming, Matthew J. Sharman, Neva G. Avery, Dawn M. Love, Ana L. Gómez, Timothy P. Scheett, William J. Kraemer and Jeff S. Volek

The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate-protein (HFMP; 61% fat) diet (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (–2.2 kg; p ≤ .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 ± 0.14 to 3.27 ± 0.09 L · min−1) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (–10 and –20%, respectively) group but not the C (–8 and –16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (–18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.

Restricted access

Bradley C. Nindl, William J. Kraemer, Lincoln A. Gotshalk, James O. Marx, Jeff S. Volek, Jill A. Bush, Keijo Häkkinen, Robert U. Newton and Steve J. Fleck

Regional fat distribution (RFD) has been associated with metabolic derangements in populations with obesity. For example, upper body fat patterning is associated with higher levels of free testosterone (FT) and lower levels of sex-hormone binding globulin (SHBG). We sought to determine the extent to which this relationship was true in a healthy (i.e., non-obese) female population and whether RFD influenced androgen responses to resistance exercise. This study examined the effects of RFD on total testosterone (TT), FT, and SHBG responses to an acute resistance exercise test (ARET) among 47 women (22 ± 3 years; 165 ± 6 cm; 62 ± 8 kg; 25 ± 5 %BF; 23 ± 3 BMI). RFD was characterized by 3 separate indices: waist-to-hip ratio (WHR), ratio of upper arm fat to mid-thigh fat assessed with magnetic resonance imaging (MRI ratio), and ratio of subscapular to triceps ratio (SB/TRi ratio). Skinfolds were measured for the triceps, chest, subscapular, mid-axillary, suprailaic, abdomen, and thigh regions. The ARET consisted of 6 sets of 10 RM squats separated by 2-min rest periods. Blood was obtained pre- and post- ARET. TT, FT, and SHBG concentrations were determined by radioimmunoassay. Subjects were divided into tertiles from the indices of RFD, and statistical analyses were performed by an ANOVA with repeated measures (RFD and exercise as main effects). Significant (p < .05) increases following the AHRET were observed for TT (~25%), FT (~25%), and SHBG (4%). With multiple regression analysis, anthropometric measures significantly predicted pre- concentrations of FT, post-concentrations of TT, and pre-concentrations of SHBG. The SB/TRi and MRI ratios but not the WHR, were discriminant for hormonal concentrations among the tertiles. In young, healthy women, resistance exercise can induce transient increases in testosterone, and anthropometric markers of adiposity correlate with testosterone concentrations.

Restricted access

Emily C. Borden, William J. Kraemer, Bryant J. Walrod, Emily M. Post, Lydia K. Caldwell, Matthew K. Beeler, William H. DuPont, John Paul Anders, Emily R. Martini, Jeff S. Volek and Carl M. Maresh

Purpose: To evaluate the changes in the state of hydration in elite National Collegiate Athletic Association (NCAA) Division I college wrestlers during and after a season. Methods: Ohio State University wrestling team members (N = 6; mean [SD] age = 19.6 [1.1] y; height = 171.6 [2.9] cm; body mass = 69.5 [8.1] kg) gave informed consent to participate in the investigation with measurements (ie, body mass, urine-specific gravity [USG; 2 methods], Visual Analog Scale thirst scale, plasma osmolality) obtained during and after the season. Results: Measurements for USG, regardless of methods, were not significantly different between visits, but plasma osmolality was significantly (P = .001) higher at the beginning of the season—295.5 (4.9) mOsm·kg−1 compared with 279.6 (6.1) mOsm·kg−1 after the season. No changes in thirst ratings were observed, and the 2 measures of USG were highly correlated (r > .9, P = .000) at each time point, but USG and plasma osmolality were not related. Conclusions: A paradox in the clinical interpretation of euhydration in the beginning of the season was observed with the USG, indicating that the wrestlers were properly hydrated, while the plasma osmolality showed they were not. Thus, the tracking of hydration status during the season is a concern when using only NCAA policies and procedures. The wrestlers did return to normal euhydration levels after the season on both biomarkers, which is remarkable, as previous studies have indicated that this may not happen because of the reregulation of the osmol-regulatory center in the brain.

Restricted access

William J. Kraemer, Jill A. Bush, Robbin B. Wickham, Craig R. Denegar, Ana L. Gomez, Lincoln A. Gotshalk, Noel D. Duncan, Jeff S. Volek, Robert U. Newton, Margot Putukian and Wayne J. Sebastianelli

Context:

Prior investigations using ice, massage, or exercise have not shown efficacy in relieving delayed-onset muscle soreness.

Objectives:

To determine whether a compression sleeve worn immediately after maximal eccentric exercise enhances recovery.

Design:

Randomized, controlled clinical study.

Setting:

University sports medicine laboratory.

Participants:

Fifteen healthy, non-strength-trained men, matched for physical criteria, randomly placed in a control group or a continuous compression-sleeve group (CS).

Methods and Measures:

Subjects performed 2 sets of 50 arm curls. 1RM elbow flexion at 60°/s, upper-arm circumference, resting-elbow angle, serum creatine kinase (CK), and perception-of-soreness data were collected before exercise and for 3 days.

Results:

CK was significantly (P < .05) elevated from the baseline value in both groups, although the elevation in the CS group was less. CS prevented loss of elbow extension, decreased subjects’ perception of soreness, reduced swelling, and promoted recovery of force production.

Conclusions:

Compression is important in soft-tissue-injury management.

Restricted access

William J. Kraemer, Ana L. Gómez, Nicholas A. Ratamess, Jay R. Hoffman, Jeff S. Volek, Martyn R. Rubin, Timothy P. Scheett, Michael R. McGuigan, Duncan French, Jaci L. VanHeest, Robbin B. Wickham, Brandon Doan, Scott A. Mazzetti, Robert U. Newton and Carl M. Maresh

Objective:

To determine the effects of Vicoprofen®, ibuprofen, and placebo on anaerobic performance and pain relief after resistance-exercise-induced muscle damage.

De-sign:

Randomized, controlled clinical study.

Setting:

University human-performance/sports-medicine laboratory.

Participants:

36 healthy men.

Methods and Measures:

After baseline testing (72 h), participants performed an eccentric-exercise protocol. Each was evaluated for pain 24 h later and randomly assigned to a Vicoprofen (VIC), ibuprofen (IBU), or placebo (P) group. Postexercise testing was performed every 24 h for 4 d.

Results:

Significantly greater muscle force, power, and total work were observed in VIC than in P (P < .05) for most time points and for IBU at 48 h.

Conclusions:

Anaerobic performance is enhanced with VIC, especially within the first 24 h after significant muscle-tissue damage. The greater performances observed at 48 h might be a result of less damage at this time point with VIC treatment.