Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Jeroen Van Cutsem x
Clear All Modify Search
Restricted access

Susan Vrijkotte, Romain Meeusen, Cloe Vandervaeren, Luk Buyse, Jeroen van Cutsem, Nathalie Pattyn and Bart Roelands

Purpose: The 2-bout exercise protocol has been developed to diagnose nonfunctional overreaching and the “overtraining syndrome.” It consists of 2 maximal exercise bouts separated by 4 hours. Mental fatigue negatively influences performance, but the effects of its occurrence during the 2-bout exercise protocol have never been investigated. The aim of this study was to examine whether mental fatigue (induced during the rest period) influences physical and cognitive performance during/after the second exercise bout of the 2-bout exercise protocol. Methods: Nine healthy, well-trained male cyclists participated in a single-blind, randomized, placebo-controlled crossover study. The intervention consisted of either 1.5-hour rest (control) or performing a computer-based Stroop task to induce mental fatigue. Cognitive (Eriksen Flanker task), physiological (lactate, maximum heart rate, and maximum wattage), and subjective data (mental fatigue-visual analog scale, Profile of Mood States, and rating of perceived exertion) were gathered. Results: Ratings of fatigue, tension, and mental fatigue were affected in the mental fatigue condition (P < .05). Neither physiological nor cognitive differences were found between conditions. Ratings of mental fatigue were already affected after the first maximum exercise test (P < .05). Conclusions: Neither physical nor cognitive performance was affected by mental fatigue, but subjective ratings did reveal significant differences. It is recommended to exclude mentally challenging tasks during the 2-bout exercise protocol rest period to ascertain unaffected subjective test results. This study should be repeated in athletes diagnosed with nonfunctional overreaching/overtraining syndrome.

Restricted access

Tine Torbeyns, Bas de Geus, Stephen Bailey, Lieselot Decroix, Jeroen Van Cutsem, Kevin De Pauw and Romain Meeusen

Background:

Physical activity is positively associated with physical health, cognitive performance, brain functioning and academic performance. The aim of this study is to investigate the influence of bike desks in the classroom on adolescents’ energy expenditure, physical health, cognitive performance, brain functioning and academic performance.

Methods:

Forty-four adolescents were randomly assigned to control group (CG) or intervention group (IG). During 5 months, the IG used a bike desk for 4 class hours/week. Energy expenditure was measured during 6 consecutive days. Anthropometric parameters, aerobic fitness, academic performance, cognitive performance and brain functioning were assessed before (T0) and after (T1) the intervention.

Results:

Energy expenditure of the IG was significantly higher during the class hours in which they used the bike desks relative to normal class hours. The CG had a significantly higher BMI at T1 relative to T0 while this was not significantly different for the IG. Aerobic fitness was significantly better in the IG at T1 relative to T0. No significant effects on academic performance cognitive performance and brain functioning were observed.

Conclusions:

As the implementation of bike desks in the classroom did not interfere with adolescents’ academic performance, this can be seen as an effective means of reducing in-class sedentary time and improving adolescents’ physical health.

Restricted access

Kevin De Pauw, Bart Roelands, Jeroen Van Cutsem, Lieselot Decroix, Angelica Valente, Kim Taehee, Robert B. Lettan II, Andres E. Carrillo and Romain Meeusen

Introduction:

Nasal spray (NAS) containing caffeine (CAF) or glucose (GLUC) activates sensory(motor) cortices.

Purpose:

To investigate the influence of CAF or GLUC NAS on exercise and cognitive performance.

Methods:

Eleven male subjects (age 22 ± 2 y) performed a maximal cycle test and 2 familiarization and 3 experimental trials. Each trial included a 30-s Wingate test and a 30-min time-trial (TT) performance test interspersed by 15 min of rest. Before and after each exercise test a Stroop task was conducted. Placebo NAS with or without CAF or GLUC was provided before each exercise session and at each completed 25% of the TT. Exercise-performance, physiological, and cognitive measures were obtained. Magnitude-based inferences determined the likelihood that NAS solutions would be beneficial, trivial, or negative to exercise-performance measures based on the smallest worthwhile effect. Physiological and cognitive measures were analyzed using (non)parametric tests (P < .05).

Results:

GLUC NAS substantially increased the average power output during the TT (very likely beneficial: 98%). No further worthwhile exercise-performance enhancements were found for both substances. In addition, no significant differences in physiological and cognitive measures were observed. In line with mouth rinsing, GLUC was shown to substantially enhance endurance performance, probably due to the activation of the olfactory pathway and/or extra-oral sweet-taste receptors.

Conclusion:

GLUC NAS enhances endurance performance, which indicates a novel administration route. The higher activity in sensory brain cortices probably elicited the ergogenic effect. However, no further physiological and cognitive changes occurred, indicating that higher doses of substrates might be required.