Search Results

You are looking at 1 - 3 of 3 items for

  • Author: João Paulo Limongi França Guilherme x
Clear All Modify Search
Restricted access

João Paulo Limongi França Guilherme and Antonio Herbert Lancha Jr.

Carnosine (β-alanyl-L-histidine), abundantly found in skeletal muscle, plays an important role during exercise, especially for high-intensity contractions. Variability in muscle carnosine content between individuals exists and may also be explained by different genetic bases, although no study has addressed the association of polymorphisms in genes related to carnosine metabolism in athletes. This study aimed to investigate the frequency of single nucleotide polymorphisms (SNPs) in the carnosinase genes (CNDP1 and CNDP2) in a large Brazilian cohort of athletes and nonathletes. Eight SNPs were compared between a representative cohort of elite athletes from Brazil (n = 908) and a paired group of nonathletes (n = 967). The athletes were stratified into three groups: endurance (n = 328), power (n = 415), and combat (n = 165). The CNDP2 rs6566810 (A/A genotype) is overrepresented in endurance athletes, but only in international-level endurance athletes. Three SNPs (CNDP2 rs3764509, CNDP2-CNDP1 rs2346061, and CNDP1 rs2887) were overrepresented in power athletes compared with nonathletes. Carriers of the minor allele had an increased odds ratio of being a power athlete. For the rs2346061, no significant difference was observed in genotype frequencies between power and combat sports athletes, but for rs2887 the power and combat groups showed an inverse genotype distribution. In conclusion, we found that minor alleles carriers for CNDP2 rs3764509 (G-allele), CNDP2-CNDP1 rs2346061 (C-allele), and CNDP1 rs2887 (A-allele) are more likely to be a power athlete. These polymorphisms may be novel genetic markers for power athletes. Furthermore, these results are suggestive of a distinct CNDP genotype for sporting development.

Restricted access

Vitor de Salles Painelli, Rafael Pires da Silva, Odilon Marques de Oliveira Junior, Luana Farias de Oliveira, Fabiana Braga Benatti, Tobias Rabelo, João Paulo Limongi França Guilherme, Antonio Herbert Lancha Junior and Guilherme Giannini Artioli

We investigated the effects of low- and high-dose calcium lactate supplementation on blood pH and bicarbonate (Study A) and on repeated high-intensity performance (Study B). In Study A, 10 young, physically active men (age: 24 ± 2.5 years; weight: 79.2 ± 9.45 kg; height: 1.79 ± 0.06 m) were assigned to acutely receive three different treatments, in a crossover fashion: high-dose calcium lactate (HD: 300 mg·kg−1 body mass), low-dose calcium lactate (LD: 150 mg·kg−1 body mass) and placebo (PL). During each visit, participants received one of these treatments and were assessed for blood pH and bicarbonate 0, 60, 90, 120, 150, 180, and 240 min following ingestion. In Study B, 12 young male participants (age: 26 ± 4.5 years; weight: 82.0 ± 11.0 kg; height: 1.81 ± 0.07 m) received the same treatments of Study A. Ninety minutes after ingestion, participants underwent 3 bouts of the upper-body Wingate test and were assessed for blood pH and bicarbonate 0 and 90 min following ingestion and immediately after exercise. In Study A, both HD and LD promoted slight but significant increases in blood bicarbonate (31.47 ± 1.57 and 31.69 ± 1.04 mmol·L−1, respectively) and pH levels (7.36 ± 0.02 and 7.36 ± 0.01, respectively), with no effect of PL. In Study B, total work done, peak power, mean power output were not affected by treatments. In conclusion, low- and high-dose calcium lactate supplementation induced similar, yet very discrete, increases in blood pH and bicarbonate, which were not sufficiently large to improve repeated high-intensity performance.

Restricted access

João Paulo Limongi França Guilherme, Ekaterina A. Semenova, Hirofumi Zempo, Gabriel L. Martins, Antonio H. Lancha Junior, Eri Miyamoto-Mikami, Hiroshi Kumagai, Takuro Tobina, Keisuke Shiose, Ryo Kakigi, Takamasa Tsuzuki, Noriko Ichinoseki-Sekine, Hiroyuki Kobayashi, Hisashi Naito, Oleg V. Borisov, Elena S. Kostryukova, Nikolay A. Kulemin, Andrey K. Larin, Edward V. Generozov, Noriyuki Fuku and Ildus I. Ahmetov

Purpose: To replicate previous genome-wide association study identified sprint-related polymorphisms in 3 different cohorts of top-level sprinters and to further validate the obtained results in functional studies. Methods: A total of 240 Japanese, 290 Russians, and 593 Brazilians were evaluated in a case-control approach. Of these, 267 were top-level sprint/power athletes. In addition, the relationship between selected polymorphisms and muscle fiber composition was evaluated in 203 Japanese and 287 Finnish individuals. Results: The G allele of the rs3213537 polymorphism was overrepresented in Japanese (odds ratio [OR]: 2.07, P = .024) and Russian (OR: 1.93, P = .027) sprinters compared with endurance athletes and was associated with an increased proportion of fast-twitch muscle fibers in Japanese (P = .02) and Finnish (P = .041) individuals. A meta-analysis of the data from 4 athlete cohorts confirmed that the presence of the G/G genotype rather than the G/A+A/A genotypes increased the OR of being a sprinter compared with controls (OR: 1.49, P = .01), endurance athletes (OR: 1.79, P = .001), or controls + endurance athletes (OR: 1.58, P = .002). Furthermore, male sprinters with the G/G genotype were found to have significantly faster personal times in the 100-m dash than those with G/A+A/A genotypes (10.50 [0.26] vs 10.76 [0.31], P = .014). Conclusion: The rs3213537 polymorphism found in the CPNE5 gene was identified as a highly replicable variant associated with sprinting ability and the increased proportion of fast-twitch muscle fibers, in which the homozygous genotype for the major allele (ie, the G/G genotype) is preferable for performance.