Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Joar Hansen x
Clear All Modify Search
Restricted access

Bent R. Rønnestad and Joar Hansen

Previous studies in endurance athletes have indicated that block periodization (BP) can be a good alternative to the more traditional organization of training despite the fact that the total volume and intensity of the training are similar. However, these studies usually last only 4–12 wk. The aim of the present single-case study was to investigate the consequences of 58 wk with systematic BP of low-intensity training (LIT), moderate-intensity training (MIT), and high-intensity interval training (HIT) including incorporation of heavy strength training. It is important that a maintenance stimulus on the nonprioritized training modalities was added in the different training blocks. Performance-related variables were tested regularly during the intervention. The studied cyclist started with a maximal oxygen uptake (VO2max) of 73.8 mL · kg−1 · min−1, peak aerobic power (Wmax) of 6.14 W/kg, and a power output at 3 mmol/L blood lactate concentration (Power3la-) of 3.6 W/kg. Total training volume during the 58-wk intervention was 678 h, of which 452 h were LIT (67%), 124 h were MIT (18%), 69 h were HIT (10%), and 34 h were heavy strength training (5%). The weekly training volume had a large range depending on the focus of the training block. After the intervention the cyclist’s VO2max was 87 mL · kg−1 · min−1, Wmax was 7.35 W/kg, and Power3la- was 4.9 W/kg. This single case indicates that the present training program can be a good alternative to the more traditional organization of long-term training of endurance athletes. However, a general recommendation cannot be given based on this single-case study.

Restricted access

Bent R. Rønnestad, Tue Rømer and Joar Hansen

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.

Restricted access

Bent R. Rønnestad, Joar Hansen, Ivana Hollan, Matt Spencer and Stian Ellefsen

The current study investigated the effects of 8 wk of strength-training cessation after 25 wk of strength training on strength- and cycling-performance characteristics. Elite cyclists were randomly assigned to either 25 wk of endurance training combined with heavy strength training (EXP, n = 7, maximal oxygen uptake [V̇O2max] 77 ± 6 mL . kg-1 . min-1; 3 × 4–10 RM, 1 to 2 d/wk) or to endurance training only (CON, n = 7, V̇O2max 73 ± 5 mL . kg-1 . min-1). Thereafter, both groups performed endurance training only for 8 wk, coinciding with the initial part of the competition season. Data were assessed for practical significance using magnitude-based inferences. During the 25-wk preparatory period, EXP had a larger positive impact on maximal isometric half-squat force, squat jump (SJ), maximal aerobic power (Wmax), power output at 4 mmol/L [La], and mean power in 30-s Wingate test than did CON (ES = 0.46-0.74). Conversely, during the 8-wk competition period EXP had a reduction in SJ, Wmax, and mean power in the 30-s Wingate test compared with CON (ES = 0.49-0.84). The present findings suggest rapid decline of adaptations on termination of strength training during the first 8 wk of the competition period in elite cyclists.

Restricted access

Dionne A. Noordhof, Sjur J. Øfsteng, Linnea Nirenberg, Daniel Hammarström, Joar Hansen, Bent R. Rønnestad and Øyvind Sandbakk

Performance-determining variables are usually measured from a rested state and not after prolonged exercise, specific to when athletes compete for the win in long-distance events. Purpose: (1) To compare cross-country skiing double-poling (DP) performance and the associated physiological and biomechanical performance-determining variables between a rested state and after prolonged exercise and (2) to investigate whether the relationship between the main performance-determining variables and DP performance is different after prolonged submaximal DP than when tested from a rested state. Methods: Male cross-country skiers (N = 26) performed a blood lactate profile test and an incremental test to exhaustion from a rested state on day 1 (D1; all using DP) and after 90-minute submaximal DP on day 2 (D2). Results: The DP performance decreased following prolonged submaximal DP (D1: peak speed = 15.33–20.75 km·h−1, median = 18.1 km·h−1; D2: peak speed = 13.68–19.77 km·h−1, median = 17.8 km·h−1; z = −3.96, P < .001, effect size r = −.77), which coincided with a reduced submaximal gross efficiency and submaximal and peak cycle length, with no significant change in peak oxygen uptake (P = .26, r = .23). The correlation coefficient between D1 cycle length at 12 km·h−1 and D2 performance is significantly smaller than the correlation coefficient between D2 cycle length at 12 km·h−1 and D2 performance (P = .033), with the same result being found for peak cycle length (P < .001). Conclusions: The reduced DP performance after prolonged submaximal DP coincided with a reduced submaximal gross efficiency and shorter peak cycle length. The results indicate that performance-determining variables could be determined after prolonged exercise to gain more valid insight into long-distance DP performance.