Search Results

You are looking at 1 - 3 of 3 items for

  • Author: John B. Leiper x
Clear All Modify Search
Restricted access

John B. Leiper and Ron J. Maughan

Total body water (TBW) and water turnover rates (WTR) of 8 competitive swimmers (SW) and 6 age-matched non-training individuals (CON) were determined using deuterium oxide dilution and elimination. During the 7-day study, individuals in the SW group trained 9 times, swimming on average 42.4 km, while the CON group did no regular exercise. Water temperature in the swimming pool was between 26 and 29 °C during training sessions. Body mass at the beginning and end of the study period remained essentially the same in the SW (67.8 ± 6.3 kg) and CON (61.1 ± 8.5 kg) groups. Mean ± SD TBW of the SW (38.7 ± 5.6 L) was similar to that of the CON (37.5 ± 8:0 L). Mean WTR was faster in the SW (54 ± 18 ml · kg · day−1) than the CON (28 ± 21 ml · kg · day−1). Mean daily urine output was similar in the SW (14 ± 5 ml · kg · day−1) and CON (14 ± 3 ml · kg · day−1). Calculated non-renal daily water loss was faster in the SW (41 ± 21 ml · kg · day−1) than the CON (13 ± 20 ml · kg · day−1). This study demonstrates that WTR are faster in young swimmers who exercise strenuously in cool water than in non-training individuals and that the difference was due to the approximately 3-times greater non-renal water losses that the exercising group incurred. This suggests that exercise-induced increases in sweat rates are a major factor in water loss in swimmers training in cool water.

Restricted access

Nicholas Gant, John B. Leiper and Clyde Williams

This study examined gastric emptying, core temperature, and sprint performance during prolonged intermittent shuttle running in 30 °C when ingesting a carbohydrate-electrolyte solution (CES) or favored water (FW). Nine male soccer players performed 60 min of shuttle running, ingesting fluid before exercise and every 15 min during exercise. Gastric emptying was measured using a double-sampling aspiration technique, and intestinal temperature was monitored via ingested capsules. There were no differences between trials in the total fluid volume emptied from the stomach during each exercise period (P = 0.054). The volume emptied every 15 min was 244 ± 67 mL in the CES trial and 273 ± 66 mL in the FW trial. Intestinal temperature was higher during exercise in the CES trial (P = 0.004), and cumulative sprint time was shorter (P = 0.037). Sprint performance was enhanced by the ingestion of a CES, which resulted in elevated core temperatures, and the rate of gastric emptying remained similar between solutions.

Restricted access

Chaouachi Anis, John B. Leiper, Souissi Nizar, Aaron J. Coutts and Chamari Karim

The month-long diurnal Ramadan fast imposes a major challenge to Islamic athletes. Sporting events are programmed throughout the year, with the result that training and competition are often scheduled during Ramadan. The small numbers of well-controlled studies that have examined the effects of Ramadan on athletic performance suggest that few aspects of physical fitness are negatively affected, and only modest decrements are observed. Whereas subjective feelings of fatigue and other mood indicators are often cited as implying additional stress on the athlete throughout Ramadan, most studies show these measures may not be reflected in decreases in performance. The development and early implementation of sensible eating and sleeping strategies can greatly alleviate the disruptions to training and competitiveness, thus allowing the athlete to perform at a high level while undertaking the religious intermittent fast. Nevertheless, further research is required to understand the mechanisms and energy pathways that allow athletes to maintain their performance capacities during Ramadan, and which factors are responsible for the observed decrements in performance of some individuals.