Search Results

You are looking at 1 - 2 of 2 items for

  • Author: John Durocher x
Clear All Modify Search
Restricted access

Tania Pereira, John Durocher and Jamie Burr

Background: Insufficient physical activity (PA) is associated with numerous chronic diseases and premature mortality, and the challenge of meeting recommended PA guidelines is exacerbated in the winter. Snowmobiling can potentially contribute to PA accumulation, but the objective metabolic and physical demands are unclear. The purpose of this study was to assess the physical demands of riding a snowmobile. Methods: Habitual snowmobile riders responded to a survey describing a typical ride (n = 4015). Using this data, terrain-specific testing courses were created, and recreational snowmobile riders (n = 40) participated in a scaled representative ride (21 [8] min) while aerobic metabolism (VO2) and muscular fatigue were quantified. Results: The mean VO2 while riding, irrespective of terrain, was 18.5 (8.4) mL·kg−1·min−1, with significant differences based on geographic location (13.4 [5.2] vs 25.7 [6.6] mL·kg−1·min−1, P < .001). Muscular fatigue was apparent in maximal handgrip (−7% [8%], P < .001) across both riding terrains, but not lower body power, suggesting a greater influence of an upper body strength component. Conclusions: Snowmobiling is an activity that generally falls within the moderate-intensity activity range and involves both aerobic fitness and muscular strength. There were substantial differences in demand between terrains, suggesting that additional benefits may be conferred from mountain riding as it was more metabolically demanding.

Restricted access

Ian M. Greenlund, Piersan E. Suriano, Steven J. Elmer, Jason R. Carter and John J. Durocher

Background: Sedentary activity and sitting for at least 10 hours per day can increase the risk for cardiovascular disease by more than 60%. Use of standing desks may decrease sedentary time and improve cardiovascular health. Acute standing lowers pulse wave velocity (PWV), but chronic effects remain unknown. The purpose of this study was to determine the effect of chronic standing desk use on arterial stiffness versus seated controls. Methods: A total of 48 adults participated in this study. Twenty-four participants qualified as seated desk users (age 41 [10] y, body mass index 25 [4] kg/m2) and 24 as standing desk users (age 45 [12] y, body mass index 25 [5] kg/m2). Arterial stiffness was assessed as PWV within the aorta, arm, and leg. Results: Carotid–femoral PWV (cfPWV) was not different between seated (6.6 [1.3] m/s) and standing (6.9 [1.3] m/s) groups (P = .47). Similarly, there were no differences in arm or leg PWV between groups (P = .13 and P = .66, respectively). A secondary analysis of traditional factors of age and aerobic fitness revealed significant differences in cfPWV in seated and standing desk participants. Age also significantly influenced cfPWV across conditions. Conclusions: Standing for >50% of a workday did not affect PWV. Consistent with previous research, fitness and age are important modulators of arterial stiffness.