Search Results

You are looking at 1 - 10 of 14 items for

  • Author: John J. McMahon x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Christina Carr, John J. McMahon, and Paul Comfort

Purpose:

Previous research has investigated changes in athletes’ strength, power, and speed performances across the competitive season of many sports, although this has not been explored in cricketers. The aim of this study was to investigate changes in lower-body strength and jump and sprint performances across an English county cricket season.

Methods:

Male cricketers (N = 12; age 24.4 ± 2.3 y, body mass 84.3 ± 9.9 kg, height 184.1 ± 8.1 cm) performed countermovement jumps (CMJs) and 20-m sprints on 4 separate occasions and back-squat strength testing on 3 separate occasions across a competitive season.

Results:

Both absolute (12.9%, P = .005, effect size [ES] = 0.53) and relative lower-body strength (15.8%, P = .004, ES = 0.69) and CMJ height (5.3%, P = .037, ES = 0.42) improved significantly over the preseason training period, although no significant change (1.7%, P > .05) in sprint performance was observed. In contrast, absolute (14.3%, P = .001, ES = 0.72) and relative strength (15.0%, P = .001, ES = 0.77), CMJ height (4.2%, P = .023, ES = 0.40), and sprint performance (3.8%, P = .012, ES = 0.94) declined significantly across the season.

Conclusions:

The results of this study show that neither the demands of the competitive cricket season nor current in-season training practices provide a sufficient stimulus to maintain strength, jump, and sprint performances in these cricketers. Therefore, coaches should implement a more-frequent, higher-load strength-training program across the competitive cricket season.

Restricted access

Jessica A. Calderbank, Paul Comfort, and John J. McMahon

Purpose: The aim of the current study was to investigate the relationship between dive distance (DD) and countermovement jump (CMJ) height, track start CMJ height, countermovement broad jump (CMBJ) distance, track start broad jump distance, and isometric midthigh pull peak force and relative peak force. Methods: A total of 27 (11 female and 16 male) regional-national-international-standard swimmers (mean [SD]; age = 19.5 [5.5] y; mass = 69.3 [10.5] kg; height = 1.77 [0.09] m) performed 3 trials of a track start dive, CMJ, track start CMJ, CMBJ, track start broad jump, and isometric midthigh pull. Results: Data were separated into pooled (females and males combined), females, and males. Large to very large correlations were found between DD and all variables tested for pooled data (r = .554–.853, P < .001–.008), with DD-CMBJ displaying the highest correlation (r = .853, P < .001). CMBJ accounted for 70% of the variance in DD. Females demonstrated moderate nonsignificant correlations between DD isometric midthigh pull (r = .379, P < .125). Males demonstrated very large significant correlations between DD-CMJ (r = .761, P < .001). Conclusions: DD demonstrated strong correlations with jump performances and multijoint isometric force production in pooled data. Males showed stronger correlations than females due to being stronger and being able to perform the jumping/strength tasks to a higher standard. Enhanced jump performance and increased maximal force production may, therefore, enhance DD in swimmers.

Restricted access

Paul Comfort, Paul. A. Jones, John J. McMahon, and Robert Newton

The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666–.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.

Restricted access

John J. McMahon, Paul A. Jones, and Paul Comfort

Purpose:

To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference.

Methods:

Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform.

Results:

Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P < .001) and the force platform (ICC = .96, P < .001). Dependent t tests revealed that the JJS yielded a significantly greater CMJ jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P < .001, Cohen d = 1.39, power = 1.00). There was, however, an excellent relationship between CMJ heights derived from the JJS and force platform (r = .998, P < .001, power = 1.00), with a coefficient of determination (R 2) of .995. Therefore, the following correction equation was produced: Criterion jump height = (0.8747 × alternative jump height) – 0.0666.

Conclusions:

The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

Restricted access

John J. McMahon, Paul A. Jones, Timothy J. Suchomel, Jason Lake, and Paul Comfort

Purpose: The Reactive Strength Index Modified (RSImod) has been recently identified and validated as a method of monitoring countermovement-jump (CMJ) performance. The kinetic and kinematic mechanisms that optimize a higher RSImod score are, however, currently unknown. The purpose of this study, therefore, was to compare entire CMJ force–, power–, velocity–, and displacement–time curves (termed temporal-phase analysis) of athletes who achieve high versus low RSImod scores. Methods: Fifty-three professional male rugby league players performed 3 maximal-effort CMJs on a force platform, and variables of interest were calculated via forward dynamics. The top (high RSImod group) and bottom (low RSImod group) of 20 athletes’ CMJ kinetic- and kinematic-time curves were compared. Results: The high-RSImod group (0.53 ± 0.05 vs 0.36 ± 0.03) jumped higher (37.7 ± 3.9 vs 31.8 ± 3.2 cm) with a shorter time to takeoff (TTT) (0.707 ± 0.043 vs 0.881 ± 0.122 s). This was achieved by a more rapid unweighting phase followed by greater eccentric and concentric force, velocity, and power for large portions (including peak values) of the jump, but a similar countermovement displacement. The attainment of a high RSImod score therefore required a taller, but thinner, active impulse. Conclusions: Athletes who perform the CMJ with a high RSImod, as achieved by high jumps with a short TTT, demonstrate superior force, power, velocity, and impulse during both the eccentric and concentric phases of the jump. Practitioners who include the RSImod calculation in their testing batteries may assume that greater RSImod values are attributed to an increase in these underpinning kinetic and kinematic parameters.

Restricted access

Jason Lake, Peter Mundy, Paul Comfort, John J. McMahon, Timothy J. Suchomel, and Patrick Carden

This study examined concurrent validity of countermovement vertical jump reactive strength index modified and force–time characteristics recorded using a 1-dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral countermovement vertical jumps on 2 portable force plates placed on top of 2 in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to takeoff; jump height; reactive strength index modified; and braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r ≥ .99). There were small (d < 0.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (P < .001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% confidence limits, 0.9%–2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement were for jump height (2.1%), time to takeoff (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force–time variables, from unloaded countermovement vertical jump. Thus, practitioners can use both force plates interchangeably.

Restricted access

Paul Comfort, Christopher Thomas, Thomas Dos’Santos, Paul A. Jones, Timothy J. Suchomel, and John J. McMahon

Purpose: To determine the reliability and variability of the Dynamic Strength Index (DSI) calculated from squat-jump (SJ) vs countermovement-jump (CMJ) peak force (PF) and to compare DSI values between methods. Methods: Male youth soccer and rugby league players (N = 27; age 17.2 ± 0.7 y, height 173.9 ± 5.7 cm, body mass 71.1 ± 7.2 kg) performed 3 trials of the SJ, CMJ, and isometric midthigh pull (IMTP) on 2 separate days. DSI was calculated by dividing the PF during each jump by the IMTP PF. Results: DSI-SJ exhibited moderate (intraclass correlation coefficient [ICC] = .419) within-session reliability and high variability (percentage coefficient of variation [%CV] = 15.91) during session 1; however, this improved noticeably during session 2 (ICC = .948, %CV = 4.03). In contrast, DSI-CMJ showed nearly perfect within-session reliability (ICC = .920–.952) and low variability (%CV = 3.80–4.57) for both sessions. Moreover, DSI-SJ values demonstrated a small yet significant increase between sessions (P = .01, d = 0.37), whereas only a trivial and nonsignificant increase was observed for DSI-CMJ between sessions (P = .796, d = 0.07). Between-sessions reliability was very high for the DSI-SJ (ICC = .741) and nearly perfect for the DSI-CMJ (ICC = .924). There was no significant or meaningful difference (P = .261, d = 0.12) between DSI-SJ (0.82 ± 0.18) and DSI-CMJ (0.84 ± 0.15). Conclusions: Practitioners should use DSI-CMJ, as it is a more reliable measure than DSI-SJ, although it produces similar ratios.

Restricted access

John J. McMahon, Jason P. Lake, Nicholas J. Ripley, and Paul Comfort

The purpose of this study was to determine the usefulness of calculating jump take-off momentum in rugby league (RL) by exploring its relationship with sprint momentum, due to the latter being an important attribute of this sport. Twenty-five male RL players performed 3 maximal-effort countermovement jumps on a force platform and 3 maximal effort 20-m sprints (with split times recorded). Jump take-off momentum and sprint momentum (between 0 and 5, 5 and 10, and 10 and 20 m) were calculated (mass multiplied by velocity) and their relationship determined. There was a very large positive relationship between both jump take-off and 0- to 5-m sprint momentum (r = .781, P < .001) and jump take-off and 5- to 10-m sprint momentum (r = .878, P < .001). There was a nearly perfect positive relationship between jump take-off and 10- to 20-m sprint momentum (r = .920, P < .001). Jump take-off and sprint momentum demonstrated good–excellent reliability and very large–nearly perfect associations (61%–85% common variance) in an RL cohort, enabling prediction equations to be created. Thus, it may be practically useful to calculate jump take-off momentum as part of routine countermovement jump testing of RL players and other collision-sport athletes to enable the indirect monitoring of sprint momentum.

Restricted access

John J. McMahon, Shannon Murphy, Sophie J.E. Rej, and Paul Comfort

Purpose:

Gross measures of countermovement-jump (CMJ) performance are commonly used to track maturational changes in neuromuscular function in rugby league (RL). The purpose of this study was to conduct both a gross and a more detailed temporal-phase analysis of the CMJ performances of senior and academy RL players, to provide greater insight into how neuromuscular function differs between these groups.

Methods:

Twenty senior and 14 academy (under-19) male RL players performed 3 maximal-effort CMJs on a force platform, with forward dynamics subsequently employed to allow gross performance measures and entire kinetic– and kinematic–time curves to be compared between groups.

Results:

Jump height (JH), reactive strength index modified, concentric displacement, and relative concentric impulse (C-IMP) were the only gross measures that were greater for senior players (d = 0.58–0.91) than for academy players. The relative force- and displacement–time curves were similar between groups, but the relative power– and velocity–time curves were greater (d = 0.59–0.97) for the senior players at 94–96% and 89–100% of the total movement time, respectively.

Conclusions:

The CMJ distinguished between senior and academy RL players, with seniors demonstrating greater JH through applying a larger C-IMP and thus achieving greater velocity throughout the majority of the concentric phase and at takeoff. Therefore, academy RL players should train to improve triple (ie, ankle, knee, and hip) extension velocity during the CMJ to bring their JH scores in line with those attained by senior players.

Restricted access

Caleb D. Bazyler, Satoshi Mizuguchi, Ashley A. Kavanaugh, John J. McMahon, Paul Comfort, and Michael H. Stone

Purpose: To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Methods: Fourteen volleyball players were divided into 2 groups—returners (n = 7) and new players (n = 7)—who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. Results: There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete’s preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Conclusions: Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners’ greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.