Search Results

You are looking at 1 - 10 of 22 items for

  • Author: John Kelly x
Clear All Modify Search
Restricted access

Carl G. Mattacola

Column-editor : John J. Kelly

Restricted access

Sarah Jane Kelly, Michael Ireland, Frank Alpert and John Mangan

An online survey was conducted to examine the alleged association between alcohol sponsorship of sports and alcohol consumption and attitudes toward sponsoring brands by Australian university sportspeople (i.e., university students representing their university in competitive sports; N = 501; 51% female). A third (33%) of participants reported receipt of alcohol industry sponsorship. Multiple regression analysis revealed an association between disordered consumption (i.e., alcohol abuse) and sportspeople’s receiving direct-to-user sponsorship in the form of product samples, volume club rebates, vouchers, or prizes. Positive attitudes toward alcohol sponsorship in sport correlated with dangerously excessive (i.e., acute) drinking. The evidence suggests that policy makers, sporting organizations, and universities should target specific sponsorships and consumption outcomes rather than considering an overall ban on alcohol industry sponsorship in sport. Results suggest that student-targeted policy and governance alternatives directed at team culture, attitudes toward alcohol, and more subtle forms of sponsorships (i.e., discounted product and vouchers) may be appropriate.

Restricted access

John M. Silva III, Charles J. Hardy and R. Kelly Crace

Restricted access

Stephen John Thomas, Charles B. Swanik, Kathleen Swanik and John D. Kelly

Context:

Pathologies such as anterior instability and impingement are common in baseball and have been linked to decreases in internal-rotation (IR) motion and concurrent increases in external-rotation (ER) motion. In addition, alterations to scapular upward rotation have been identified in this population.

Objective:

To measure glenohumeral (GH) IR and ER rotation, total range of motion (ROM), and scapular upward rotation throughout the course of a Division I collegiate baseball season.

Design:

Pretest to posttest study.

Setting:

Controlled laboratory setting.

Participants:

Thirty-one collegiate baseball players with no current shoulder or elbow injury completed this study.

Intervention:

Participants were measured for all dependent variables at preseason and postseason.

Main Outcome Measures:

GH IR and ER were measured supine with the scapula stabilized. Total GH ROM was calculated as the sum of IR and ER measures. Scapular upward rotation was tested at rest, 60°, 90°, and 120° of GH abduction in the scapular plane.

Results:

Overall, the dominant arm had significantly less GH IR and significantly more ER than the nondominant arm. The total motion on the dominant arm was significantly less than on the nondominant arm. No significant differences were observed from preseason to postseason for IR, ER, or total motion. Dominant-arm scapular upward rotation significantly decreased at 60°, 90°, and 120° of abduction from preseason to postseason.

Conclusion:

Collegiate baseball players presented with significant GH-motion differences (decreases in IR and increases in ER) in their dominant arm compared with their nondominant arm. There was also significantly less total motion on the dominant arm. After 12 wk of competitive Division I collegiate baseball, there were significant decreases in upward rotation over the season.

Restricted access

Stephen J. Thomas, Kathleen A. Swanik, Charles “Buz” Swanik, Kellie C. Huxel and John D. Kelly IV

Context:

Pathologies such as anterior instability and impingement are common in baseball and have been linked to decreases in internal rotation (IR) and concurrent increases in external rotation (ER). In addition, alterations to scapular position have been identified in this population, but the chronology of these adaptations is uncertain.

Objectives:

To determine whether there is a change in range of motion and scapular position after a single baseball season.

Design:

Prospective cohort.

Setting:

High school.

Participants:

19 high school baseball players (age 16.6 ± 0.8 y, mass 78.6 ± 12.0 kg, height 180.3 ± 6.2 cm).

Interventions:

Subjects were measured for all dependent variables at preseason and postseason.

Main Outcome Measures:

Participants were measured for glenohumeral (GH) IR and ER with the scapula stabilized. Total GH range of motion was calculated as the sum of IR and ER. Scapular upward rotation was measured at 0°, 60°, 90°, and 120° of GH abduction in the scapular plane, and scapular protraction, at 0°, hands on hips, and 90° of GH abduction.

Results:

Overall, the dominant arm had significantly less GH IR (11.4°, P = .005) and significantly more ER (4.7°, P = .001) than the nondominant arm. Total motion in the dominant arm was significantly less than in the nondominant arm (6.7°, P = .001). Scapular upward rotation in the dominant arm significantly increased at 0° (2.4°, P = .002) and significantly decreased at 90° (3.2°, P = .001) and 120° (3.2°, P < .001) of abduction from preseason to postseason. Scapular protraction in the nondominant arm significantly decreased at 45° (0.32 cm, P = .017) and 90° (0.33 cm, P = .006) from preseason to postseason.

Conclusion:

These data suggest that scapular adaptations may be acquired over a relatively short period (12 wk) in a competitive baseball season. Competitive high school baseball players also presented with significant GH motion differences between their dominant and nondominant arms. Total motion was also significantly less in the dominant arm than in the nondominant arm.

Restricted access

Michael Ra, Michael Sitler, Jeff Ryan, Raymond Moyer, Paul Marchetto, John Kelly and Iris Kimura

Chondral lesions often occur in the knee as isolated defects or part of more complex injuries. Articular cartilage defects decrease the ability of the knee to sustain weight-bearing loads and may accelerate degeneration of the joint when left untreated. The purpose of this study was to determine the clinical, functional, and radiographic outcome of arthroscopic abrasion chondroplasty of the knee. The Articular Cartilage Rating System was used to assess the location, size, depth, and description of the articular lesion. The Standard Knee Evaluation Form and Cincinnati Knee Rating Scale were used to assess the clinical, functional, and radiographic outcome of the procedure. Average time to postsurgery follow-up was 46 ± 26.69 months. Within the constraints of the present study, arthroscopic abrasion chondroplasty of the knee had a favorable clinical, functional, and radiographic outcome. However, more study is needed with larger samples and longer follow-up before definitive conclusions about the efficacy of the procedure can be made.

Restricted access

Hidetomo Suzuki, Kathleen A. Swanik, Kellie C. Huxel, John D. Kelly IV and C. Buz Swanik

Objective:

To determine the effect of scapular fatigue on shoulder and elbow kinematics and accuracy.

Design:

Pretest–posttest.

Setting:

Laboratory.

Participants:

30 healthy men.

Interventions:

Subjects performed seated overhead throws into a target before and after a standardized scapular-muscle-fatigue protocol.

Main Outcome Measurements:

Shoulder and elbow kinematic data were analyzed during throwing. Scapular upward rotation was measured (0°, 45°, and 90° humeral elevation in scaption) with an inclinometer. Throwing accuracy was measured as mean error distance from the target (cm).

Results:

After fatigue, there was a significant increase in total elbow motion (12 % more in cocking phase, P < .05) and elbow velocity in the follow-through phase (average and maximum into flexion, P < .05). Throwing accuracy decreased 26% after fatigue (P < .05).

Conclusions:

Scapular-muscle fatigue results in compensatory motions at the elbow that might affect performance and contribute to elbow pathologies.

Restricted access

Louise A. Kelly, John J. Reilly, Diane M. Jackson, Colette Montgomery, Stanley Grant and James Y. Paton

Tracking of total physical activity (PA), moderate to vigorous activity (MVPA), and sedentary behavior was assessed in 42 young children (mean age at baseline 3.8 years) over a 2-year period using the Actigraph accelerometer. Tracking was analyzed using Spearman rank correlations, percentage agreements, and kappa statistics. Spearman rank correlations were r = .35 (p = .002) for total PA, r = .37 (p = .002) for MVPA, and r = .35 (p = .002) for sedentary behavior. Percentage agreements for PA, MVPA, and sedentary behavior were 38, 41, and 26 respectively. Kappa statistics for PA, MVPA, and sedentary behavior ranged from poor to fair. Results suggest low levels of tracking of total physical activity, MVPA, and sedentary behavior in young Scottish children over a 2-year period.

Restricted access

Marcus Smith, Rosemary Dyson, Tudor Hale, Matthew Hamilton, John Kelly and Peggy Wellington

This study examined the effects of serial reductions in energy and fluid intake on two simulated boxing performances separated by 2 days recovery. Eight amateur boxers (age: 23.6 ± 3.2 years; height 175 ± 5 cm; body mass [BM] 73.3 ± 8.3 kg [Mean ± SD]) performed two simulated boxing bouts (BB) under normal (N-trial) and restricted (R-trial) diets in a counterbalanced design over 5 days. The trials were separated by a 9-day period of normal dietary behavior (X-trial). BM was recorded on days 1, 3, and 5 of each trial. Simulated bouts of three, 3-min rounds with 1-min recovery were completed on days 3 (BB1) and 5 (BB2) of each 5-day trial. Punching force (N) was recorded from 8 sets of 7 punches by a purpose-built boxing ergometer. Heart rate (fC) was monitored continuously (PE3000 Polar Sports Tester, Kempele, Finland), and blood lactate (BLa) and glucose (BG) were determined 4-min post-performance (2300 StaPlus, YSI, Ohio). Energy and fluid intakes were significantly lower in the R-trial (p < .05). Body mass was maintained during the N-trial but fell 3% (p < .05) during the R-trial. There were no significant differences in end-of-bout fC or post-bout BG, but BLa was higher in the N- than the R-trial (p < .05). R-trial punching forces were 3.2% and 4.6% lower, respectively, compared to the corresponding N-trial bouts, but the differences did not reach statistical significance. These results suggest that energy and fluid restrictions in weight-governed sports do not always lead to a significant decrease in performance, but because of the small sample size and big variations in individual performances, these findings should be interpreted with care.

Restricted access

Matthew David Cook, Stephen David Myers, John Stephen Michael Kelly and Mark Elisabeth Theodorus Willems

Impaired glucose tolerance was shown to be present 48 hr following muscle-damaging eccentric exercise. We examined the acute effect of concentric and muscle-damaging eccentric exercise, matched for intensity, on the responses to a 2-hr 75-g oral glucose tolerance test (OGTT). Ten men (27 ± 9 years, 178 ± 7 cm, 75 ± 11 kg, VO2max: 52.3 ± 7.3 ml·kg-1·min-1) underwent three OGTTs after an overnight 12 hr fast: rest (control), 40-min (5 × 8-min with 2-min interbout rest) of concentric (level running, 0%, CON) or eccentric exercise (downhill running, –12%, ECC). Running intensity was matched at 60% of maximal metabolic equivalent. Maximal isometric force of m. quadriceps femoris of both legs was measured before and after the running protocols. Downhill running speed was higher (level: 9.7 ± 2.1, downhill: 13.8 ± 3.2 km·hr-1, p < .01). Running protocols had similar VO2max (p = .59), heart rates (p = .20) and respiratory exchange ratio values (p = .74) indicating matched intensity and metabolic demands. Downhill running resulted in higher isometric force deficits (level: 3.0 ± 6.7, downhill: 17.1 ± 7.3%, p < .01). During OGTTs, area-under-the-curve for plasma glucose (control: 724 ± 97, CON: 710 ± 77, ECC: 726 ± 72 mmol·L-1·120 min, p = .86) and insulin (control: 24995 ± 11229, CON: 23319 ± 10417, ECC: 21842 ± 10171 pmol·L-1·120 min, p = .48), peak glucose (control: 8.1 ± 1.3, CON: 7.7 ± 1.2, ECC: 7.7 ± 1.1 mmol·L-1, p = .63) and peak insulin levels (control: 361 ± 188, CON: 322 ± 179, ECC: 299 ± 152 pmol·L-1, p = .30) were similar. It was concluded that glucose tolerance and the insulin response to an OGTT were not changed immediately by muscle-damaging eccentric exercise.