Search Results

You are looking at 1 - 7 of 7 items for

  • Author: John P. Scholz x
Clear All Modify Search
Restricted access

John P. Scholz

Restricted access

Gregor Schöner and John P. Scholz

An important aspect of the study of multi-degree-of-freedom motor control is the analysis of high-dimensional variance data. Through the “uncontrolled manifold” (UCM) approach the structure in such data can be discovered and interpreted. The covariation by randomization (CR) approach provides nonlinear and potentially multi-dimensional measures of covariance. We critically examine these two approaches and compare them relative to the three fundamental issues of choice of variables, choice of model, and adoption of either a geometrical or a correlational view of variance. The UCM approach is a geometrical approach that seeks to discover the structure of variance in multi-degree-of-freedom task spaces in which all degrees of freedom have a common metric. The structure of variance in that space is interpreted in terms of its meaning for task variables. The CR approach seeks to uncover correlations between interpretable elemental variables. It requires a defined and common metric in the space of task variables, but not the elemental variables. Although the CR approach is better suited for systems with strong nonlinearities, variance structure that is not caused by correlation but by different amounts of variance in the different elemental variables is undetected by this approach.

Restricted access

John P. Scholz and L. Courtenay Brandt

We tested the hypothesis that the movement trajectory of the center of mass (CM) and the horizontal trajectory of the head are the primary focus of the brain's control of the task of standing up from sitting to reach an object. Both infants and older children were studied. Stability was estimated by intertrial variability of actual CM, head, and wrist movement trajectories. They were compared to each other and indirectly to the stability of body segment motions via comparison to head or wrist motion variability estimated from body segment motion variability. The results suggest that standing up from a seat is organized primarily around controlling global task parameters: trajectories of the body CM and, during the postliftoff phase of the task, the head horizontal trajectory, rather than individual movement components. Infants at the earliest age of independent performance exhibited the major effects.

Restricted access

Ya-weng Tseng and John P. Scholz

The uncontrolled manifold approach was used to examine the effect of workspace location on the use of motor abundance to control the hand’s path during reaching. Participants pointed to targets located in the contralateral and ipsilateral workspaces at two different distances. When reaching to all parts of the workspace, the component of joint configuration variance consistent with an identical hand path across trials was significantly higher than the component of joint configuration variance leading to a variable hand path. The relative magnitude of this difference was affected primarily by target orientation and minimally by target distance. The control of hand-path direction when reaching ipsilaterally was associated with more selective use of motor abundance compared to reaching contralaterally. The control of hand-path extent was not affected by target orientation. Biomechanical factors are discussed as possible reasons that lead to the observed selective workspace effects.

Restricted access

Yaweng Tseng, John P. Scholz and Gregor Schöner

This study used the uncontrolled manifold (UCM) approach to study joint coordination underlying the control of task-related variables important for success at reaching and pointing to targets. More combinations of joint motions are available to the control system to achieve task success than are strictly necessary. How this abundance of motor solutions is managed by the nervous system and whether and how the availability of visual information affects the solution to joint coordination was investigated in this study. The variability of joint angle combinations was partitioned into 2 components with respect to control of either the hand's path or the path of the arm's center of mass (CM). The goal-equivalent variability (GEV) component represents trial-to-trial fluctuations of the joint configuration consistent with a stable value of the hand or CM path. The other component, non-goal-equivalent variability (NGEV), led to deviations away from the desired hand or CM path. We hypothesized a style of control in which the NGEV component is selectively restricted while allowing a range of goal-equivalent joint combinations to be used to achieve stability of the hand and CM paths. Twelve healthy right-handed subjects reached across their body to the center of a circular target with both the right and left arms and with their eyes open or closed on different trials. When repeating the task with the same arm under identical task conditions, subjects used a range of goal-equivalent joint configurations to control the entire trajectory of both the hand's and the arm's CM motion, as well as the terminal position of the pointer-tip. Overall joint configuration variability was consistently larger in the middle of the movement, near the time of peak velocity. The style of joint coordination was qualitatively similar regardless of the arm used to point or the visual condition. Quantitative differences in the structure of joint coordination were present for the non-dominant arm, however, when pointing in the absence of vision of the hand and target. The results of this study suggest that the nervous system uses a control strategy that provides for a range of goal-equivalent, rather than unique, joint combinations to stabilize the values of important task-related variables, while selectively restricting joint configurations that change these values. The possible advantage of this style of control is discussed. Absence of vision during reaching affected joint coordination only quantitatively and only for the less skilled left arm, suggesting that the role of visual information may be greater when organizing the motor components of this arm.

Restricted access

Daniela Mattos, Joshua Kuhl, John P. Scholz and Mark L. Latash

The concept of motor equivalent combinations of arm muscles, or M-modes, was investigated during reaching to insert a pointer into a cylindrical target with and without an elbow perturbation. Five M-modes across 15 arm/scapula muscles were identified by principal component analysis with factor extraction. The relationship between small changes in the M-modes and changes in the position/orientation of the pointer were investigated by linear regression analyses. The results revealed a motor equivalent organization of the M-modes for perturbed compared with nonperturbed reaches, both with respect to hand position and orientation, especially in the first 100-ms postperturbation. Similar findings were obtained for motor equivalence computed based on changes in the joint configuration, although the kinematically defined motor equivalence was stronger for pointer orientation. The results support the hypothesis that the nervous system organizes muscles into M-modes and flexibly scales M-mode activation to preserve stable values of variables directly related to performance success.

Restricted access

Mark L. Latash, John P. Scholz and Gregor Schöner

Driven by recent empirical studies, we offer a new understanding of the degrees of freedom problem, and propose a refined concept of synergy as a neural organization that ensures a one-to-many mapping of variables providing for both stability of important performance variables and flexibility of motor patterns to deal with possible perturbations and/or secondary tasks. Empirical evidence is reviewed, including a discussion of the operationalization of stability/flexibility through the method of the uncontrolled manifold. We show how this concept establishes links between the various accounts for how movement is organized in redundant effector systems.