Search Results

You are looking at 1 - 3 of 3 items for

  • Author: John P. Troup x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Three-Dimensional Analysis of the Men‘s 100-m Freestyle during the 1992 Olympic Games

Jane M. Cappaert, David L. Pease, and John P. Troup

Twelve male 100-m freestyle swimmers were videotaped during the 1992 Olympic Games. Four cameras, two above water and two below, recorded the same stroke cycle of the swimmer at approximately the 40- to 45-m mark. The whole body and the recovering arms were digitized from the videotapes to recreate a complete stroke cycle. Body position variables and hand reaction forces (Schleihauf, 1979) were calculated. Swimmers were divided into elite and subelite groups based on their swimming velocity and were compared for differences in biomechanical variables. Elites used slightly lower hand forces while maintaining a higher propelling efficiency. Subelites had opposite rotations about the longitudinal axis of the body rather than symmetrical body roll. The elite swimmers were different from subelites in that their pulling patterns were more efficient and their body position was more streamlined. These variables assisted them in achieving faster swimming velocities without requiring higher propulsive forces.

Restricted access

The Influence of Low versus High Carbohydrate Diet on a 45-min Strenuous Cycling Exercise

Stavros A. Kavouras, John P. Troup, and Jacqueline R. Berning

To examine the effects of a 3-day high carbohydrate (H-CHO) and low carbohydrate (L-CHO) diet on 45 min of cycling exercise, 12 endurance-trained cyclists performed a 45-min cycling exercise at 82 ± 2% VO2peak following an overnight fast, after a 6-day diet and exercise control. The 7-day protocol was repeated under 2 randomly assigned dietary trials H-CHO and L-CHO. On days 1–3, subjects consumed a mixed diet for both trials and for days 4–6 consumed isocaloric diets that contained either 600 g or 100 g of carbohydrates, for the HCHO and the L-CHO trials, respectively. Muscle biopsy samples, taken from the vastus lateralis prior to the beginning of the 45-min cycling test, indicated that muscle glycogen levels were significantly higher (p < .05) for the H-CHO trial (104.5 ± 9.4 mmol/kg wet wt) when compared to the L-CHO trial (72.2 ± 5.6 mmol/kg wet wt). Heart rate, ratings of perceived exertion, oxygen uptake, and respiratory quotient during exercise were not significantly different between the 2 trials. Serum glucose during exercise for the H-CHO trial significantly increased (p < .05) from 4.5 ± 0.1 mmol · L−1 (pre) to 6.7 ± 0.6 mmol · L−1 (post), while no changes were found for the L-CHO trial. In addition, post-exercise serum glucose was significantly greater (p < .05) for the H-CHO trial when compared to the L-CHO trial (H-CHO, 6.7 ± 0.6 mmol · L−1; L-CHO, 5.2 ± 0.2 mmol · L−1). No significant changes were observed in serum free fatty acid, triglycerides, or insulin concentration in either trial. The findings suggest that L-CHO had no major effect on 45-min cycling exercise that was not observed with H-CHO when the total energy intake was adequate.

Restricted access

The Nutritional Habits of Young Adolescent Swimmers

Jacqueline R. Berning, John P. Troup, Peter J. VanHandel, Jack Daniels, and Nancy Daniels

Dietary food records from adolescent male and female swimmers participating in a national developmental training camp were analyzed for nutrient density. The mean caloric intake was 5,221.6 kcal for males and 3,572.6 kcal for females. The distribution of calories between carbohydrates, protein, and fat was not ideal for athletes trying to optimize performance. These young swimmers consumed too much fat and not enough carbohydrate. They consumed more than the RDA of vitamins A and C, and thiamine, riboflavin, and niacin; however, some concern is expressed for females who did not meet the RDA for calcium and iron. This study shows that although a group of adolescent swimmers may be consuming enough nutrients, individual swimmers may have very poor dietary habits and thus may not be providing adequate fuel or nutrients for optimal training or performance.