Search Results

You are looking at 1 - 10 of 11 items for

  • Author: Jonathan Stephen x
Clear All Modify Search
Restricted access

Jonathan A. Jensen, Shaina M. Ervin and Stephen W. Dittmore

Social media have become an increasingly important tool for college coaches and administrators to connect with fans, alumni, and recruits. However, despite their increasing prevalence, it is not well understood which factors may contribute to the reach and popularity in social media of high-profile figures such as coaches and athletic directors. Using Football Bowl Subdivision head football coaches and the popular social-media platform Twitter, this case study sought to explore the potential influence of on-field performance on coaches’ popularity in social media. Among the results is the finding that the most influential factor is the football program’s prestige (long-term success), while the coach’s on-field success and the size of the school’s fan base are of lesser importance. Given the increasing influence of social media in intercollegiate athletics, the case study’s results feature several important considerations for administrators seeking to use social-media platforms to increase the reach of their athletic programs.

Restricted access

Iker Muñoz, Stephen Seiler, Javier Bautista, Javier España, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To quantify the impact of training-intensity distribution on 10K performance in recreational athletes.

Methods:

30 endurance runners were randomly assigned to a training program emphasizing low-intensity, sub-ventilatory-threshold (VT), polarized endurance-training distribution (PET) or a moderately high-intensity (between-thresholds) endurance-training program (BThET). Before the study, the subjects performed a maximal exercise test to determine VT and respiratory-compensation threshold (RCT), which allowed training to be controlled based on heart rate during each training session over the 10-wk intervention period. Subjects performed a 10-km race on the same course before and after the intervention period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity, <VT), zone 2 (moderate intensity, between VT and RCT), and zone 3 (high intensity, >RCT). The contribution of total training time in each zone was controlled to have more low-intensity training in PET (±77/3/20), whereas for BThET the distribution was higher in zone 2 and lower in zone 1 (±46/35/19).

Results:

Both groups significantly improved their 10K time (39min18s ± 4min54s vs 37min19s ± 4min42s, P < .0001 for PET; 39min24s ± 3min54s vs 38min0s ± 4min24s, P < .001 for BThET). Improvements were 5.0% vs 3.6%, ~41 s difference at post-training-intervention. This difference was not significant. However, a subset analysis comparing the 12 runners who actually performed the most PET (n = 6) and BThET (n = 16) distributions showed greater improvement in PET by 1.29 standardized Cohen effect-size units (90% CI 0.31–2.27, P = .038).

Conclusions:

Polarized training can stimulate greater training effects than between-thresholds training in recreational runners.

Restricted access

Iker Muñoz, Roberto Cejuela, Stephen Seiler, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To describe training loads during an Ironman training program based on intensity zones and observe training–performance relationships.

Methods:

Nine triathletes completed a program with the same periodization model aiming at participation in the same Ironman event. Before and during the study, subjects performed ramp-protocol tests, running, and cycling to determine aerobic (AeT) and anaerobic thresholds (AnT) through gas-exchange analysis. For swimming, subjects performed a graded lactate test to determine AeT and AnT. Training was subsequently controlled by heart rate (HR) during each training session over 18 wk. Training and the competition were both quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; <AeT), zone 2 (moderate intensity; between AeT and AnT), and zone 3 (high intensity; >AnT).

Results:

Most of training time was spent in zone 1 (68% ± 14%), whereas the Ironman competition was primarily performed in zone 2 (59% ± 22%). Significant inverse correlations were found between both total training time and training time in zone 1 vs performance time in competition (r = –.69 and –.92, respectively). In contrast, there was a moderate positive correlation between total training time in zone 2 and performance time in competition (r = .53) and a strong positive correlation between percentage of total training time in zone 2 and performance time in competition (r = .94).

Conclusions:

While athletes perform with HR mainly in zone 2, better performances are associated with more training time spent in zone 1. A high amount of cycling training in zone 2 may contribute to poorer overall performance.

Restricted access

Jonathan M. Oliver, Dustin P. Joubert, Steven E. Martin and Stephen F. Crouse

Purpose:

To determine the effects of creatine supplementation on blood lactate during incremental cycling exercise.

Methods:

Thirteen male subjects (M ± SD 23 ± 2 yr, 178.0 ± 8.1 cm, 86.3 ± 16.0 kg, 24% ± 9% body fat) performed a maximal, incremental cycling test to exhaustion before (Pre) and after (Post) 6 d of creatine supplementation (4 doses/d of 5 g creatine + 15 g glucose). Blood lactate was measured at the end of each exercise stage during the protocol, and the lactate threshold was determined as the stage before achieving 4 mmol/L. Lactate concentrations during the incremental test were analyzed using a 2 (condition) × 6 (exercise stage) repeated-measures ANOVA. Differences in power at lactate threshold, power at exhaustion, and total exercise time were determined by paired t tests and are presented as M ± SD.

Results:

Lactate concentrations were reduced during exercise after supplementation, demonstrating a significant condition effect (p = .041). There was a tendency for increased power at the lactate threshold (Pre 128 ± 45 W, Post 143 ± 26 W; p = .11). Total time to fatigue approached significant increases (Pre 22.6 ± 3.2 min, Post 23.3 ± 3.3 min; p = .056), as did maximal power output (Pre 212.5 ± 32.5 W, Post 220 ± 34.6 W; p = .082).

Conclusions:

Our findings demonstrate that creatine supplementation decreases lactate during incremental cycling exercise and tends to raise lactate threshold. Therefore, creatine supplementation could potentially benefit endurance athletes.

Restricted access

Jonathan. P. Little, Scott C. Forbes, Darren G. Candow, Stephen M. Cornish and Philip D. Chilibeck

Creatine (Cr) supplementation increases muscle mass, strength, and power. Arginine α-ketoglutarate (A-AKG) is a precursor for nitric oxide production and has the potential to improve blood flow and nutrient delivery (i.e., Cr) to muscles. This study compared a commercial dietary supplement of Cr, A-AKG, glutamine, taurine, branchedchain amino acids, and medium-chain triglycerides with Cr alone or placebo on exercise performance and body composition. Thirty-five men (~23 yr) were randomized to Cr + A-AKG (0.1 g · kg−1 · d−1 Cr + 0.075 g · kg−1 · d−1 A-AKG, n = 12), Cr (0.1 g · kg−1 · d−1, n = 11), or placebo (1 g · kg−1 · d−1 sucrose, n = 12) for 10 d. Body composition, muscle endurance (bench press), and peak and average power (Wingate tests) were measured before and after supplementation. Bench-press repetitions over 3 sets increased with Cr + A-AKG (30.9 ==6.6 → 34.9 ± 8.7 reps; p < .01) and Cr (27.6 ± 5.9 → 31.0 ± 7.6 reps; p < .01), with no change for placebo (26.8 ± 5.0 → 27.1 ± 6.3 reps). Peak power significantly increased in Cr + A-AKG (741 ± 112 → 794 ± 92 W; p < .01), with no changes in Cr (722 ± 138 → 730 ± 144 W) and placebo (696 ± 63 → 705 ± 77 W). There were no differences in average power between groups over time. Only the Cr-only group increased total body mass (79.9 ± 13.0→81.1 ± 13.8 kg; p < .01), with no significant changes in lean-tissue or fat mass. These results suggest that Cr alone and in combination with A-AKG improves upper body muscle endurance, and Cr + A-AKG supplementation improves peak power output on repeated Wingate tests.

Restricted access

Susanna Kola-Palmer, Samantha Buckley, Gabrielle Kingston, Jonathan Stephen, Alison Rodriguez, Nicole Sherretts and Kiara Lewis

Player welfare is an important development in supporting elite athletes during their professional careers. Little is known about how player engagement with player welfare provision impact on mental health. Over two consecutive years, professional rugby football league (RFL) players were invited to complete an anonymous online survey assessing psychological stress, athletic identity, and attitudes to player welfare provision. Findings indicate that nearly half of respondents experienced symptoms of anxiety and depression. Multivariate analyses suggest that higher psychological stress and athletic identity and less knowledge and less positive attitudes to RFL mental health support is associated with worse mental health, whereas older age is associated with better mental health. The study has identified some key variables to focus on in developing player care and support management, and also suggest directions for future research guiding player welfare support, especially regarding increasing positive attitudes to mental health supports.

Restricted access

Dylan Thompson, Clyde Williams, Stephen J. McGregor, Ceri W. Nicholas, Frank McArdle, Malcolm J. Jackson and Jonathan R. Powell

The aim of the present study was to investigate whether 2 weeks of vitamin C supplementation affects recovery from an unaccustomed bout of exercise. Sixteen male subjects were allocated to either a placebo (P; n = 8) or vitamin C group (VC; n = 8). The VC group consumed 200 mg of ascorbic acid twice a day, whereas the P group consumed identical capsules containing 200 mg of lactose. Subjects performed a prolonged (90-min) intermittent shuttle-running test 14 days after supplementation began. Post-exercise serum creatine kinase activities and myoglobin concentrations were unaffected by supplementation. However, vitamin C supplementation had modest beneficial effects on muscle soreness, muscle function, and plasma concentrations of malondialdehyde. Furthermore, although plasma interleukin-6 increased immediately after exercise in both groups, values in the VC group were lower than in the P group 2 hours after exercise (p < .05). These results suggest that prolonged vitamin C supplementation has some modest beneficial effects on recovery from unaccustomed exercise.

Restricted access

Lauren J. Lattimer, Joel L. Lanovaz, Jonathan P. Farthing, Stéphanie Madill, Soo Kim, Stephen Robinovitch and Cathy Arnold

The purposes of this study were to examine female age differences in: (1) upper extremity (UE) and trunk muscle activity, elbow joint moment, loading force, and UE energy absorption during a controlled forward body descent; and (2) UE muscle strength. Twenty young (mean 24.8 ± 3.4 years) and 20 older (68.4 ± 5.7 years) women were assessed via dynamometry for isometric, concentric, and eccentric UE strength and performed forward descents on force plates at three body lean angles (60°, 45°, and 30° from horizontal). Significant differences (p < .05) were found for muscle strength, biomechanics, and muscle activity. Concentric UE strength averaged 15% lower in older women. At 30° body lean, older women absorbed less energy. Older women had greater biceps brachii activation and less external oblique activation at all body lean angles. Age differences in muscle strength, activation, and energy absorption may contribute to fall-related injury risk.

Restricted access

Jonathan A. Jensen, Brian A. Turner, Jeffrey James, Chad McEvoy, Chad Seifried, Elizabeth Delia, T. Christopher Greenwell, Stephen Ross and Patrick Walsh

Published 4 decades ago, “Basking in Reflected Glory: Three (Football) Field Studies” (Cialdini et al., 1976) is the most influential study of sport consumer behavior. This article features re-creations of Studies 1 and 2, exactly 40 years after the original publication. The results of Study 1 were reproduced, with participants more than twice as likely to wear school-affiliated apparel after wins and 55% less likely after losses. The study also extends the BIRGing literature in its investigation of the influence of gender and the effect’s salience over time. Study 2’s results were not reproduced. However, study participants were significantly more likely to use first-person plural pronouns, providing further empirical evidence of BIRGing behaviors. This article makes a novel contribution to the sport consumer behavior literature by advancing the study of one of the field’s most foundational theories and serving as an impetus for future investigations of BIRGing motivations.

Restricted access

Stephen M. Cornish, Darren G. Candow, Nathan T. Jantz, Philip D. Chilibeck, Jonathan P. Little, Scott Forbes, Saman Abeysekara and Gordon A. Zello

Purpose:

The authors examined the combined effects of conjugated linoleic acid (CLA), creatine (C), and whey protein (P) supplementation during strength training.

Methods:

Sixty-nine participants (52 men, 17 women; M ± SD age 22.5 ± 2.5 yr) were randomly assigned (double-blind) to 1 of 3 groups: CCP (6 g/d CLA + 9 g/d C + 36 g/d P; n = 22), CP (C + P + placebo oil; n = 25), or P (P + placebo oil; n = 22) during 5 wk of strength training (4–5 sets, 6–12 repetitions, 6 d/wk). Measurements were taken for body composition (air-displacement plethysmography), muscle thickness (ultrasound) of the flexors and extensors of the elbow and knee, 1-repetitionmaximum (1-RM) strength (leg press and bench press), urinary markers of bone resorption (N-telopeptides, NTx), myofibrillar protein catabolism (3-methylhistidine; 3-MH), oxidative stress (8-isoprostanes), and kidney function (microalbumin) before and after training.

Results:

Contrast analyses indicated that the CCP group had a greater increase in bench-press (16.2% ± 11.3% vs. 9.7% ± 17.0%; p < .05) and legpress (13.1% ± 9.9% vs. 7.7% ± 14.2%; p < .05) strength and lean-tissue mass (2.4% ± 2.8% vs. 1.3% ± 4.1%; p < .05) than the other groups combined. All groups increased muscle thickness over time (p < .05). The relative change in 3-MH (CCP –4.7% ± 70.2%, CP –0.4% ± 81.4%, P 20.3% ± 75.2%) was less in the groups receiving creatine (p < .05), with the difference for NTx also close to significance (p = .055; CCP–3.4% ± 66.6%, CP–3.9% ± 64.9%, P 26.0% ± 63.8%). There were no changes in oxidative stress or kidney function.

Conclusion:

Combining C, CLA, and P was beneficial for increasing strength and lean-tissue mass during heavy resistance training.