Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Julien D. Périard x
  • Refine by Access: All Content x
Clear All Modify Search
Free access

New Approaches for Dissemination and Implementation of Sport-Science Research Outcomes

David B. Pyne and Julien D. Périard

Restricted access

Effect of Exercising in the Heat on Intestinal Fatty Acid-Binding Protein, Endotoxins, and Lipopolysaccharide-Binding Protein Markers in Trained Athletic Populations: A Systematic Literature Review

Alice Wallett, Julien D. Périard, Philo Saunders, and Andrew McKune

Along with digestion and absorption of nutrients, the gastrointestinal epithelium acts as a primary intestinal defense layer, preventing luminal pathogens from entering the circulation. During exercise in the heat, epithelial integrity can become compromised, allowing bacteria and bacterial endotoxins to translocate into circulation, triggering a systemic inflammatory response and exacerbating gastrointestinal damage. While this relationship seems clear in the general population in endurance/ultraendurance exercise, the aim of this systematic review was to evaluate the effect of exercise in the heat on blood markers of gastrointestinal epithelial disturbance in well-trained individuals. Following the 2009 Preferred Reporting Items for Systematic Reviewed and Meta-Analyses guidelines, five electronic databases were searched for appropriate research, and 1,885 studies were identified. Five studies met the inclusion criteria and were subject to full methodological appraisal by two reviewers. Critical appraisal of the studies was conducted using the McMasters Critical Review Form. The studies investigated changes in markers of gastrointestinal damage (intestinal fatty acid–binding protein, endotoxin, and/or lipopolysaccharide-binding protein) following acute exercise in warm to hot conditions (≥ 30 °C) and included trained or well-trained participants with direct comparisons to a control temperate condition (≤ 22 °C). The studies found that prolonged submaximal and strenuous exercise in hot environmental conditions can acutely increase epithelial disturbance compared with exercise in cooler conditions, with disturbances not being clinically relevant. However, trained and well-trained populations appear to tolerate exercise-induced gastrointestinal disturbance in the heat. Whether this is an acquired tolerance related to regular training remains to be investigated.

Free access

Combining Heat and Altitude Training to Enhance Temperate, Sea-Level Performance

Olivier Girard, Peter Peeling, Sébastien Racinais, and Julien D. Périard

Background: Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. Purpose: To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. Conclusions: Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than “traditional” (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.

Open access

Special Environments: Altitude and Heat

Philo U. Saunders, Laura A. Garvican-Lewis, Robert F. Chapman, and Julien D. Périard

High-level athletes are always looking at ways to maximize training adaptations for competition performance, and using altered environmental conditions to achieve this outcome has become increasingly popular by elite athletes. Furthermore, a series of potential nutrition and hydration interventions may also optimize the adaptation to altered environments. Altitude training was first used to prepare for competition at altitude, and it still is today; however, more often now, elite athletes embark on a series of altitude training camps to try to improve sea-level performance. Similarly, the use of heat acclimation/acclimatization to optimize performance in hot/humid environmental conditions is a common practice by high-level athletes and is well supported in the scientific literature. More recently, the use of heat training to improve exercise capacity in temperate environments has been investigated and appears to have positive outcomes. This consensus statement will detail the use of both heat and altitude training interventions to optimize performance capacities in elite athletes in both normal environmental conditions and extreme conditions (hot and/or high), with a focus on the importance of nutritional strategies required in these extreme environmental conditions to maximize adaptations conducive to competitive performance enhancement.

Restricted access

Core Temperature Responses to Elite Racewalking Competition

Christopher John Stevens, Megan L. Ross, Julien D. Périard, Brent S. Vallance, and Louise M. Burke

Purpose: The core temperature responses during exercise and effects of different cooling strategies on endurance performance under heat stress have been investigated in recreational athletes. This investigation aimed to determine peak rectal temperatures during elite racewalking competitions and to detail any cooling strategies used. Methods: Rectal temperature was measured in 14 heat-adapted elite/preelite race walkers (9 females) via a telemetric capsule across 4 outdoor events, including the 2018 Commonwealth Games (race 1: 20 km, 25°C, 74% relative humidity [RH], n = 2) and 3 International Association of Athletics Federations–sanctioned 10-km events (race 2: 19°C, 34% RH, n = 2; race 3: 29°C, 47% RH, n = 14; and race 4: 23°C, 72% RH, n = 11). All athletes completed race 3, and a subsample completed the other events. Their use of cooling strategies and symptoms of heat illness were determined. Results: Peak rectal temperatures >40°C were observed in all events. The highest rectal temperature observed during an event was 41.2°C. These high rectal temperatures were observed without concomitant heat illness, with the exception of cramping in one athlete during race 1. The rectal temperatures tended to reach a steady state in the second half of the 20-km event, but no steady state was observed in the 10-km events. The athletes used cooling strategies in race 1 only, implementing different combinations of cold-water immersion, ice-slurry ingestion, ice-towel application, ice-vest application, and facial water spraying. Conclusions: Elite/preelite race walkers experience rectal temperatures >40°C during competition despite only moderate-warm conditions, and even when precooling and midcooling strategies are applied.

Restricted access

Hematological Adaptations Following a Training Camp in Hot and/or Hypoxic Conditions in Elite Rugby Union Players

Julien D. Périard, Olivier Girard, Nathan Townsend, Pitre Bourdon, Scott Cocking, Mohammed Ihsan, Mathieu Lacome, David Nichols, Gavin Travers, Mathew G. Wilson, Julien Piscione, and Sebastien Racinais

Purpose: To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. Methods: Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. Results: Blood volume across all groups increased by 140 mL (95%CI, 42–237; P = .006) and plasma volume by 97 mL (95%CI 28–167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [−0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1–0.5]; P = .010) and H + A (0.3 °C [0.1–0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. Conclusion: Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.

Restricted access

Intensified Training Supersedes the Impact of Heat and/or Altitude for Increasing Performance in Elite Rugby Union Players

Sebastien Racinais, Julien D. Périard, Julien Piscione, Pitre C. Bourdon, Scott Cocking, Mohammed Ihsan, Mathieu Lacome, David Nichols, Nathan Townsend, Gavin Travers, Mathew G. Wilson, and Olivier Girard

Purpose: To investigate whether including heat and altitude exposures during an elite team-sport training camp induces similar or greater performance benefits. Methods: The study assessed 56 elite male rugby players for maximal oxygen uptake, repeated-sprint cycling, and Yo-Yo intermittent recovery level 2 (Yo-Yo) before and after a 2-week training camp, which included 5 endurance and 5 repeated-sprint cycling sessions in addition to daily rugby training. Players were separated into 4 groups: (1) control (all sessions in temperate conditions at sea level), (2) heat training (endurance sessions in the heat), (3) altitude (repeated-sprint sessions and sleeping in hypoxia), and (4) combined heat and altitude (endurance in the heat, repeated sprints, and sleeping in hypoxia). Results: Training increased maximal oxygen uptake (4% [10%], P = .017), maximal aerobic power (9% [8%], P < .001), and repeated-sprint peak (5% [10%], P = .004) and average power (12% [14%], P < .001) independent of training conditions. Yo-Yo distance increased (16% [17%], P < .001) but not in the altitude group (P = .562). Training in heat lowered core temperature and increased sweat rate during a heat-response test (P < .05). Conclusion: A 2-week intensified training camp improved maximal oxygen uptake, repeated-sprint ability, and aerobic performance in elite rugby players. Adding heat and/or altitude did not further enhance physical performance, and altitude appears to have been detrimental to improving Yo-Yo.

Restricted access

Postexercise Hot-Water Immersion Does Not Further Enhance Heat Adaptation or Performance in Endurance Athletes Training in a Hot Environment

Christopher J. Stevens, Megan L.R. Ross, Amelia J. Carr, Brent Vallance, Russ Best, Charles Urwin, Julien D. Périard, and Louise Burke

Purpose: Hot-water immersion (HWI) after training in temperate conditions has been shown to induce thermophysiological adaptations and improve endurance performance in the heat; however, the potential additive effects of HWI and training in hot outdoor conditions remain unknown. Therefore, this study aimed to determine the effect of repeated postexercise HWI in athletes training in a hot environment. Methods: A total of 13 (9 female) elite/preelite racewalkers completed a 15-day training program in outdoor heat (mean afternoon high temperature = 34.6°C). Athletes were divided into 2 matched groups that completed either HWI (40°C for 30–40 min) or seated rest in 21°C (CON), following 8 training sessions. Pre–post testing included a 30-minute fixed-intensity walk in heat, laboratory incremental walk to exhaustion, and 10,000-m outdoor time trial. Results: Training frequency and volume were similar between groups (P = .54). Core temperature was significantly higher during immersion in HWI (38.5 [0.3]) than CON (37.8°C [0.2°C]; P < .001). There were no differences between groups in resting or exercise rectal temperature or heart rate, skin temperature, sweat rate, or the speed at lactate threshold 2, maximal O2 uptake, or 10,000-m performance (P > .05). There were significant (P < .05) pre–post differences for both groups in submaximal exercising heart rate (∼11 beats·min−1), sweat rate (0.34–0.55 L·h−1) and thermal comfort (1.2–1.5 arbitrary units), and 10,000-m racewalking performance time (∼3 min). Conclusions: Both groups demonstrated significant improvement in markers of heat adaptation and performance; however, the addition of HWI did not provide further enhancements. Improvements in adaptation appeared to be maximized by the training program in hot conditions.

Restricted access

Running at Increasing Intensities in the Heat Induces Transient Gut Perturbations

Alice M. Wallett, Naroa Etxebarria, Nicole A. Beard, Philo U. Saunders, Marijke Welvaert, Julien D. Périard, Andrew J. McKune, and David B. Pyne

Purpose: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. Methods: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min−1·kg−1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid–binding protein). Results: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 μg·mL−1, 2.4–8.4; mean, 95% confidence interval, P < .001), 32% (4.6 μg·mL−1, 1.8–7.4; P = .002), and 30% (3.0 μg·mL−1, 0.03–5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL−1, 0.1–0.4; P = .011). Intestinal fatty acid–binding protein increased 43% (2.1 ng·mL−1, 0.1–4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. Conclusions: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid–binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.

Free access

The Impact of a Short-Term Ketogenic Low-Carbohydrate High-Fat Diet on Biomarkers of Intestinal Epithelial Integrity and Gastrointestinal Symptoms

Alannah K.A. McKay, Alice M. Wallett, Andrew J. McKune, Julien D. Périard, Philo Saunders, Jamie Whitfield, Nicolin Tee, Ida A. Heikura, Megan L.R. Ross, Avish P. Sharma, Ricardo J.S. Costa, and Louise M. Burke

Endurance exercise can disturb intestinal epithelial integrity, leading to increased systemic indicators of cell injury, hyperpermeability, and pathogenic translocation. However, the interaction between exercise, diet, and gastrointestinal disturbance still warrants exploration. This study examined whether a 6-day dietary intervention influenced perturbations to intestinal epithelial disruption in response to a 25-km race walk. Twenty-eight male race walkers adhered to a high carbohydrate (CHO)/energy diet (65% CHO, energy availability = 40 kcal·kg FFM−1·day−1) for 6 days prior to a Baseline 25-km race walk. Athletes were then split into three subgroups: high CHO/energy diet (n = 10); low-CHO, high-fat diet (LCHF: n = 8; <50 g/day CHO, energy availability = 40 kcal·kg FFM−1·day−1); and low energy availability (n = 10; 65% CHO, energy availability = 15 kcal·kg FFM−1·day−1) for a further 6-day dietary intervention period prior to a second 25-km race walk (Adaptation). During both trials, venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for markers of intestinal epithelial disruption. Intestinal fatty acid-binding protein concentration was significantly higher (twofold increase) in response to exercise during Adaptation compared to Baseline in the LCHF group (p = .001). Similar findings were observed for soluble CD14 (p < .001) and lipopolysaccharide-binding protein (p = .003), where postexercise concentrations were higher (53% and 36%, respectively) during Adaptation than Baseline in LCHF. No differences in high CHO/energy diet or low energy availability were apparent for any blood markers assessed (p > .05). A short-term LCHF diet increased intestinal epithelial cell injury in response to a 25-km race walk. No effect of low energy availability on gastrointestinal injury or symptoms was observed.