Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Julien Louis x
Clear All Modify Search
Restricted access

Julien Louis, Fabrice Vercruyssen, Olivier Dupuy and Thierry Bernard

Master athletes are often considered exemplars of successful aging, thanks to their capacity to maintain a high sports performance during their entire life. A high training capacity, regular participation in sporting competitions, and delayed alterations in body composition and physiological capacities have been listed among the main factors contributing to impressive master athletes’ performances. However, there is a paucity of data on the metabolism and dietary habits of master athletes, and the question of whether they need to adapt their nutrition to the aging process remains open. Herein, the authors presented a contemporary overview of the metabolic challenges associated with aging, including the risk of low energy availability, anabolic resistance, and periods of metabolic crisis due to forced immobilization. After assembling scientific evidence to show that master athletes must adapt their dietary intake, the authors proposed a summary of nutritional recommendations for master athletes and suggested the next stage of research.

Restricted access

Marina Fabre, Christophe Hausswirth, Eve Tiollier, Odeline Molle, Julien Louis, Alexandre Durguerian, Nathalie Neveux and Xavier Bigard

While effects of the two classes of proteins found in milk (i.e., soluble proteins, including whey, and casein) on muscle protein synthesis have been well investigated after a single bout of resistance exercise (RE), the combined effects of these two proteins on the muscle responses to resistance training (RT) have not yet been investigated. Therefore, the aim of this study was to examine the effects of protein supplementation varying by the ratio between milk soluble proteins (fast-digested protein) and casein (slow-digested protein) on the muscle to a 9-week RT program. In a double-blind protocol, 31 resistance-trained men, were assigned to 3 groups receiving a drink containing 20g of protein comprising either 100% of fast protein (FP(100), n = 10), 50% of fast and 50% of slow proteins (FP(50), n = 11) or 20% of fast protein and 80% of casein (FP(20), n = 10) at the end of training bouts. Body composition (DXA), and maximal strength in dynamic and isometric were analyzed before and after RT. Moreover, blood plasma aminoacidemia kinetic after RE was measured. The results showed a higher leucine bioavailability after ingestion of FP(100) and FP(50) drinks, when compared with FP(20) (p< .05). However, the RT-induced changes in lean body mass (p < .01), dynamic (p < .01), and isometric muscle strength (p < .05) increased similarly in all experimental groups. To conclude, compared with the FP(20) group, the higher rise in plasma amino acids following the ingestion of FP(100) and FP(50) did not lead to higher muscle long-term adaptations.

Restricted access

Liam Anderson, Patrick Orme, Robert J. Naughton, Graeme L. Close, Jordan Milsom, David Rydings, Andy O’Boyle, Rocco Di Michele, Julien Louis, Catherine Hambly, John Roger Speakman, Ryland Morgans, Barry Drust and James P. Morton

In an attempt to better identify and inform the energy requirements of elite soccer players, we quantified the energy expenditure (EE) of players from the English Premier League (n = 6) via the doubly labeled water method (DLW) over a 7-day in-season period. Energy intake (EI) was also assessed using food diaries, supported by the remote food photographic method and 24 hr recalls. The 7-day period consisted of 5 training days (TD) and 2 match days (MD). Although mean daily EI (3186 ± 367 kcals) was not different from (p > .05) daily EE (3566 ± 585 kcals), EI was greater (p < .05) on MD (3789 ± 532 kcal; 61.1 ± 11.4 kcal.kg-1 LBM) compared with TD (2956 ± 374 kcal; 45.2 ± 9.3 kcal.kg-1 LBM, respectively). Differences in EI were reflective of greater (p < .05) daily CHO intake on MD (6.4 ± 2.2 g.kg-1) compared with TD (4.2 ± 1.4 g.kg-1). Exogenous CHO intake was also different (p < .01) during training sessions (3.1 ± 4.4 g.h-1) versus matches (32.3 ± 21.9 g.h-1). In contrast, daily protein (205 ± 30 g.kg-1, p = .29) and fat intake (101 ± 20 g, p = .16) did not display any evidence of daily periodization as opposed to g.kg-1, Although players readily achieve current guidelines for daily protein and fat intake, data suggest that CHO intake on the day before and in recovery from match play was not in accordance with guidelines to promote muscle glycogen storage.