Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Julien Pinot x
Clear All Modify Search
Restricted access

Anthony Bouillod, Julien Pinot, Flavien Soenen, Theo Ouvrard and Frederic Grappe

Purpose:

To analyze the effect of the pedaling activity in different 4-min time trials (TT4s) (laboratory and field conditions) and compare TT4 and maximal aerobic power (MAP) determined from the classical incremental exercise test in laboratory. It was hypothesized that the exercises performed on the field would determine higher physical (power output [PO]) and mental involvements due to different environmental conditions.

Methods:

Sixteen male cyclists underwent an incremental test to exhaustion and 3 TT4s under different conditions: cycle ergometer (CE), level ground (LG), and uphill (UP).

Results:

Correlation was observed for PO with a trivial effect size and narrow limits of agreement between MAP and CE TT4 (r = .96, P < .001). The comparison between the CE, LG, and UP tests indicates that PO was significantly higher in UP than in CE (+8.0%, P < .001) and LG (+11.0%, P < .001).

Conclusions:

The results suggest that PO depends on the nature of the pedaling activity. Moreover, PO under CE TT4 is a relevant predictor of MAP. It seems important to measure MAP by taking into account the cycling conditions, considering that coaches and scientists use this parameter to assess the aerobic potential of athletes and determine the exercise intensities useful for monitoring adaptation to training.

Restricted access

Anthony Bouillod, Julien Pinot, Georges Soto-Romero, William Bertucci and Frederic Grappe

A large number of power meters have been produced on the market for nearly 20 y according to user requirements.

Purpose:

To determine the validity, sensitivity, reproducibility, and robustness of the PowerTap (PWT), Stages (STG), and Garmin Vector (VCT) power meters in comparison with the SRM device.

Methods:

A national-level male competitive cyclist completed 3 laboratory cycling tests: a submaximal incremental test, a submaximal 30-min continuous test, and a sprint test. Two additional tests were performed, the first on vibration exposures in the laboratory and the second in the field.

Results:

The VCT provided a significantly lower 5-s power output (PO) during the sprint test with a low gear ratio than the SRM did (–36.9%). The STG PO was significantly lower than the SRM PO in the heavy-exercise-intensity zone (zone 2, –5.1%) and the low part of the severe-intensity zone (zone 3, –4.9%). The VCT PO was significantly lower than the SRM PO only in zone 2 (–4.5%). The STG PO was significantly lower in standing position than in the seated position (–4.4%). The reproducibility of the PWT, STG, and VCT was similar to that of the SRM system. The STG and VCT PO were significantly decreased from a vibration frequency of 48 Hz and 52 Hz, respectively.

Conclusions:

The PWT, STG, and VCT systems appear to be reproducible, but the validity, sensitivity, and robustness of the STG and VCT systems should be treated with some caution according to the conditions of measurement.