Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Justin Kemp x
Clear All Modify Search
Restricted access

Blake D. McLean, Kevin White, Christopher J. Gore and Justin Kemp

Purpose: There is debate as to which environmental intervention produces the most benefit for team sport athletes, particularly comparing heat and altitude. This quasi-experimental study aimed to compare blood volume (BV) responses with heat and altitude training camps in Australian footballers. Methods: The BV of 7 professional Australian footballers (91.8 [10.5] kg, 191.8 [10.1] cm) was measured throughout 3 consecutive spring/summer preseasons. During each preseason, players participated in altitude (year 1 and year 2) and heat (year 3) environmental training camps. Year 1 and year 2 altitude camps were in November/December in the United States, whereas the year 3 heat camp was in February/March in Australia after a full exposure to summer heat. BV, red cell volume, and plasma volume (PV) were measured at least 3 times during each preseason. Results: Red cell volume increased substantially following altitude in both year 1 (d = 0.67) and year 2 (d = 1.03), before returning to baseline 4 weeks postaltitude. Immediately following altitude, concurrent decreases in PV were observed during year 1 (d = −0.40) and year 2 (d = −0.98). With spring/summer training in year 3, BV and PV were substantially higher in January than temporally matched postaltitude measurements during year 1 (BV: d = −0.93, PV: d = −1.07) and year 2 (BV: d = −1.99, PV: d = −2.25), with year 3 total BV, red cell volume, and PV not changing further despite the 6-day heat intervention. Conclusions: We found greater BV after training throughout spring/summer conditions, compared with interrupting spring/summer exposure to train at altitude in the cold, with no additional benefits observed from a heat camp following spring/summer training.

Restricted access

Peter D. Kupcis, Gary J. Slater, Cathryn L. Pruscino and Justin G. Kemp

Purpose:

The effect of sodium bicarbonate (NaHCO3) ingestion on prerace hydration status and on 2000 m ergometer performance in elite lightweight rowers was examined using a randomized, cross-over, double-blinded design.

Methods:

To simulate body mass (BM) management strategies common to lightweight rowing, oarsmen reduced BM by approx. 4% in the 24 h preceding the trials, and, in the 2 h before performance, undertook nutritional recovery consisting of mean 43.2 kJ/kg, 2.2 g of CHO per kilogram, 31.8 mg of Na+ per kilogram, 24.3 mL of H2O per kilogram, and NaHCO3 (0.3 g of NaHCO3 per kilogram BM) or placebo (PL; 0.15 g of corn flour per kilogram BM) at 70 to 90 min before racing.

Results:

At 25 min before performance, NaHCO3 had increased blood pH (7.48 ± 0.02 vs PL: 7.41 ± 0.03, P = .005) and bicarbonate concentrations (29.1 ± 1.8 vs PL: 23.9 ± 1.6 mmol/L, P < .001), whereas BM, urine specific gravity, and plasma volume changes were similar between trials. Rowing ergometer times were similar between trials (NaHCO3: 397.8 ± 12.6; PL: 398.6 ± 13.8 s, P = .417), whereas posttest bicarbonate (11.6 ± 2.3 vs 9.4 ± 1.8 mmol/L, P = .003) and lactate concentration increases (13.4 ± 1.7 vs 11.9 ± 1.9 mmol/L, P = .001) were greater with NaHCO3.

Conclusion:

Sodium bicarbonate did not further enhance rehydration or performance in lightweight rowers when undertaking recommended post-weigh-in nutritional recovery strategies.

Restricted access

Blake D. McLean, David Buttifant, Christopher J. Gore, Kevin White, Carsten Liess and Justin Kemp

Purpose:

Little research has been done on the physiological and performance effects of altitude training on team-sport athletes. Therefore, this study examined changes in 2000-m time-trial running performance (TT), hemoglobin mass (Hbmass), and intramuscular carnosine content of elite Australian Football (AF) players after a preseason altitude camp.

Methods:

Thirty elite AF players completed 19 days of living and training at either moderate altitude (~2130 m; ALT, n = 21) or sea level (CON, n = 9). TT performance and Hbmass were assessed preintervention (PRE) and postintervention (POST1) in both groups and at 4 wk after returning to sea level (POST2) in ALT only.

Results:

Improvement in TT performance after altitude was likely 1.5% (± 4.8–90%CL) greater in ALT than in CON, with an individual responsiveness of 0.8%. Improvements in TT were maintained at POST2 in ALT. Hbmass after altitude was very likely increased in ALT compared with CON (2.8% ± 3.5%), with an individual responsiveness of 1.3%. Hbmass returned to baseline at POST2. Intramuscular carnosine did not change in either gastrocnemius or soleus from PRE to POST1.

Conclusions:

A preseason altitude camp improved TT performance and Hbmass in elite AF players to a magnitude similar to that demonstrated by elite endurance athletes undertaking altitude training. The individual responsiveness of both TT and Hbmass was approximately half the group mean effect, indicating that most players gained benefit. The maintenance of running performance for 4 wk, despite Hbmass returning to baseline, suggests that altitude training is a valuable preparation for AF players leading into the competitive season.

Restricted access

Benita J. Lalor, Shona L. Halson, Jacqueline Tran, Justin G. Kemp and Stuart J. Cormack

Purpose: To assess the impact of match-start time and days relative to match compared with the habitual sleep characteristics of elite Australian Football (AF) players. Methods: 45 elite male AF players were assessed during the preseason (habitual) and across 4 home matches during the season. Players wore an activity monitor the night before (−1), night of (0), 1 night after (+1), and 2 nights (+2) after each match and completed a self-reported rating of sleep quality. A 2-way ANOVA with Tukey post hoc was used to determine differences in sleep characteristics between match-start times and days relative to the match. Two-way nested ANOVA was conducted to examine differences between competition and habitual phases. Effect size ± 90% confidence interval (ES ± 90% CI) was calculated to quantify the magnitude of pairwise differences. Results: Differences observed in sleep-onset latency (ES = 0.11 ± 0.16), sleep rating (ES = 0.08 ± 0.14), and sleep duration (ES = 0.08 ± 0.01) between competition and habitual periods were trivial. Sleep efficiency was almost certainly higher during competition than habitual, but this was not reflected in the subjective rating of sleep quality. Conclusions: Elite AF competition does not cause substantial disruption to sleep characteristics compared with habitual sleep. While match-start time has some impact on sleep variables, it appears that the match itself is more of a disruption than the start time. Subjective ratings of sleep from well-being questionnaires appear limited in their ability to accurately provide an indication of sleep quality.

Restricted access

Corey W. Joseph, Elizabeth J. Bradshaw, Justin Kemp and Ross A. Clark

A number of methods are used to measure lower extremity musculoskeletal stiffness, but there is a paucity of research examining the reliability of these techniques. Therefore, we investigated the reliability of vertical, leg, knee, and ankle stiffness during overground running and hopping in 20 active men. Participants were required to run on a 10 m overground runway at 3.83 m/s (actual; 3.35 ± 0.12 m/s) and to hop in place at 2.2 Hz (actual; 2.37 ± 0.03 Hz), and at a self-selected frequency (actual; 2.05 ± 0.12 Hz) and at 2.2 Hz (actual; 2.39 ± 0.04 Hz). Reliability was determined using the intraclass correlation coefficient, coefficient of variation, mean differences, and Cohen’s effect sizes. There was good reliability for vertical stiffness, moderate reliability for leg stiffness, and poor reliability for knee and ankle stiffness during the running task. Similar results were observed during the 2.2 Hz hopping tasks, with good reliability displayed for vertical stiffness and poor reliability for ankle and knee stiffness. In conclusion, our results suggest that vertical stiffness is a reliable measure when running at 3.83 m/s and hopping at 2.2 Hz.