Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Karen E. Wallman x
Clear All Modify Search
Restricted access

Kagan J. Ducker, Brian Dawson and Karen E. Wallman

Beta-alanine supplementation has been shown to improve exercise performance in short-term high-intensity efforts. However, whether supplementation with beta-alanine is ergogenic to actual sporting events remains unclear and should be investigated in field testing or race simulations.

Purpose:

The aim of this study was to assess if beta-alanine supplementation could improve 2,000-m rowing-ergometer performance in well-trained male rowers.

Methods:

Participants (N = 16) completed duplicate trials (2 × before supplementation and 2 × after supplementation) of a 2,000-m rowing-ergometer race separated by 28 days of either beta-alanine (n = 7; 80 mg · kg−1 BM · d−1) or placebo (n = 9; glucose) supplementation.

Results:

Beta-alanine group (pooled) race times improved by 2.9 ± 4.1 s and placebo group slowed by 1.2 ± 2.9 s, but these results were inconclusive for performance enhancement (p = .055, ES = 0.20, smallest worthwhile change = 49% beneficial). Race split times and average power outputs only significantly improved with beta-alanine at the 750-m (time –0.7 s, p = .01, power +3.6%, p = .03) and 1,000-m (time –0.5 s, p = .01, power +2.9%, p = .02) distances. Blood La and pH postrace values were not different between groups before or after supplementation.

Conclusions:

Overall, 28 d of beta-alanine supplementation with 80 mg · kg−1 BM · d−1 (~7 g/d) did not conclusively improve 2,000-m rowing-ergometer performance in well-trained rowers.

Restricted access

Matthew Zimmermann, Grant Landers, Karen E. Wallman and Jacinta Saldaris

This study examined the physiological effects of crushed ice ingestion before steady state exercise in the heat. Ten healthy males with age (23 ± 3 y), height (176.9 ± 8.7 cm), body-mass (73.5 ± 8.0 kg), VO2peak (48.5 ± 3.6 mL∙kg∙min-1) participated in the study. Participants completed 60 min of cycling at 55% of their VO2peak preceded by 30 min of precooling whereby 7 g∙kg-1 of thermoneutral water (CON) or crushed ice (ICE) was ingested. The reduction in Tc at the conclusion of precooling was greater in ICE (-0.9 ± 0.3 °C) compared with CON (-0.2 ± 0.2 °C) (p ≤ .05). Heat storage capacity was greater in ICE compared with CON after precooling (ICE -29.3 ± 4.8 W∙m-2; CON -11.1 ± 7.3 W∙m-2, p < .05). Total heat storage was greater in ICE compared with CON at the end of the steady state cycle (ICE 62.0 ± 12.5 W∙m-2; CON 49.9 ± 13.4 W∙m-2, p < .05). Gross efficiency was higher in ICE compared with CON throughout the steady state cycle (ICE 21.4 ± 1.8%; CON 20.4 ± 1.9%, p < .05). Ice ingestion resulted in a lower thermal sensation at the end of precooling and a lower sweat rate during the initial stages of cycling (p < .05). Sweat loss, respiratory exchange ratio, heart rate and ratings of perceived exertion and thirst were similar between conditions (p > .05). Precooling with crushed ice led to improved gross efficiency while cycling due to an increased heat storage capacity, which was the result of a lower core temperature.

Restricted access

Kagan J. Ducker, Brian Dawson and Karen E. Wallman

Beta-alanine supplementation has been shown to improve exercise performance in short-term, high-intensity efforts.

Purpose:

The aim of this study was to assess if beta-alanine supplementation could improve 800 m track running performance in male recreational club runners (n = 18).

Methods:

Participants completed duplicate trials (2 presupplementation, 2 postsupplementation) of an 800 m race, separated by 28 days of either beta-alanine (n = 9; 80 mg·kg−1BM·day−1) or placebo (n = 9) supplementation.

Results:

Using ANCOVA (presupplementation times as covariate), postsupplementation race times were significantly faster following beta-alanine (p = .02), with post- versus presupplementation race times being faster after beta-alanine (–3.64 ± 2.70 s, –2.46 ± 1.80%) but not placebo (–0.59 ± 2.54 s, –0.37 ± 1.62%). These improvements were supported by a moderate effect size (d = 0.70) and a very likely (99%) benefit in the beta-alanine group after supplementation. Split times (ANCOVA) at 400 m were significantly faster (p = .02) postsupplementation in the beta-alanine group, compared with placebo. This was supported by large effect sizes (d = 1.05–1.19) and a very likely (99%) benefit at the 400 and 800 m splits when comparing pre- to postsupplementation with beta-alanine. In addition, the first and second halves of the race were faster post- compared with presupplementation following beta-alanine (1st half –1.22 ± 1.81 s, likely 78% chance of benefit; 2nd half –2.38 ± 2.31 s, d = 0.83, very likely 98% chance of benefit). No significant differences between groups or pre- and postsupplementation were observed for postrace blood lactate and pH.

Conclusion:

Overall, 28 days of beta-alanine supplementation (80 mg·kg-1BM·day-1) improved 800 m track performance in recreational club runners.

Restricted access

Jessica S. West, Tom Ayton, Karen E. Wallman and Kym J. Guelfi

Ingestion of an acute dose of phosphate has been shown to attenuate energy intake in the subsequent meal. This raises the question of whether the practice of phosphate supplementation over a number of days by athletes to enhance performance also influences energy intake. This study investigated the effect of 6 d of phosphate supplementation on appetite and energy intake, as well as aerobic capacity, in trained individuals. Twenty participants completed two 6-d phases of supplementation with either sodium phosphate (50 mg/kg of fat-free mass per day) or a placebo in a double-blinded, counterbalanced design. On Days 1, 2, and 6 of supplementation, a laboratory meal was provided to assess appetite and ad libitum energy intake. All other food and drink consumed during each supplementation phase were recorded in a food diary. After the 6 d of supplementation, peak aerobic capacity (VO2peak) was assessed. There was no difference in energy intake at the laboratory meal after an acute dose (i.e., on Day 1; placebo 2,471 ± 919 kJ, phosphate 2,353 ± 987 kJ; p = .385) or prolonged supplementation with sodium phosphate (p = .581) compared with placebo. Likewise, there was no difference in VO2peak with phosphate supplementation (placebo 52.6 ± 5.2 ml · kg−1 · min−1, phosphate 53.3 ± 6.1 ml · kg−1 · min−1; p = .483). In summary, 6 d of sodium phosphate supplementation does not appear to influence energy intake. Therefore, athletes supplementing with sodium phosphate can do so without hindering their nutritional status. However, given that phosphate supplementation failed to improve aerobic capacity, the ergogenic benefit of this supplement remains questionable.

Restricted access

Cameron P. Brewer, Brian Dawson, Karen E. Wallman and Kym J. Guelfi

Research into supplementation with sodium phosphate has not investigated the effects of a repeated supplementation phase. Therefore, this study examined the potential additive effects of repeated sodium phosphate (SP) supplementation on cycling time-trial performance and peak oxygen uptake (VO2peak). Trained male cyclists (N = 9, M ± SD VO2peak = 65.2 ± 4.8 ml · kg−1 · min−1) completed baseline 1,000-kJ time-trial and VO2peak tests separated by 48 hr, then ingested either 50 mg · kg fat-free mass−1 · d−1 of tribasic SP or a combined glucose and NaCl placebo for 6 d before performing these tests again. A 14-d washout period separated the end of one loading phase and the start of the next, with 2 SP and 1 placebo phase completed in a counterbalanced order. Although time-trial performance (55.3–56.5 min) was shorter in SP1 and SP2 (~60–70 s), effect sizes and smallest-worthwhile-change values did not differ in comparison with baseline and placebo. However, mean power output was greater than placebo during time-trial performance at the 250-kJ and 500-kJ time points (p < .05) after the second SP phase. Furthermore, mean VO2peak values (p < .01) were greater after the SP1 (3.5–4.3%), with further improvements (p < .01) found in SP2 (7.1–7.7%), compared with baseline and placebo. In summary, repeated SP supplementation, ingested either 15 or 35 d after initial loading, can have an additive effect on VO2peak and possibly time-trial performance.

Restricted access

Helen M. Milne, Karen E. Wallman, Andrew Guilfoyle, Sandy Gordon and Kerry S. Courneya

The study aim was to examine constructs of autonomy support and competence as well as the motivation continuum from the self-determination theory (SDT) as a framework for understanding physical activity (PA) motivation and behavior in breast cancer survivors. Questionnaires assessing demographics, medical factors, PA, motivation continuum, perceived autonomy support, and competence were completed by 558 breast cancer survivors. Results showed that lymphedema (X2 = 7.9, p < .01) and income (X2 = 4.6, p < .05) were associated with meeting PA guidelines. Moreover, survivors meeting PA guidelines reported more identified regulations and intrinsic motivation (p < .01), autonomy support (p < .01), and competence (p < .01). Forced entry hierarchical regression analysis showed that SDT constructs explained 20.2% (p < .01) of the PA variance. Significant independent SDT predictors included identified regulation (ß = .14, p < .05) and competence (ß = .23, p < .01), with autonomy support approaching significance (ß = .9, p = .057). SDT may be a useful model for understanding PA motivation and behavior in breast cancer survivors.