Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Karen Reid x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Karen Reid

Flatwater kayaking requires upper-body muscle strength and a lean body composition. This case study describes a nutrition intervention with a 19-year-old male elite sprint kayaker to increase muscle mass and improve recovery posttraining. Before the intervention, average daily energy intake was 13.6 ± 2.5 MJ (M ± SD; protein, 1.8 g/kg; carbohydrate, 3.6 g/kg), and the athlete was unable to eat sufficient food to meet the energy demands of training. During the 18-month intervention period, the athlete’s daily energy intake increased to 22.1 ± 3.8 MJ (protein, 3.2 g/kg; carbohydrate, 7.7 g/kg) by including milk-based drinks pre- and posttraining and before bed and an additional carbohydrate-based snack midmorning. This simple dietary intervention, along with a structured strength and conditioning program, resulted in an increase of 10 kg body mass with minimal change in body fat percentage. Adequate vitamin D status was maintained without the need for supplementation during the intervention period. In addition, the athlete reported the milk-based drinks and carbohydrate snacks were easy to consume, and no adverse side effects were experienced. This was the first time the athlete was able to maintain weight during intensive phases of the training cycle.

Restricted access

Jackie A. Dabinett, Karen Reid, and Nic James

The purpose of the present study was to develop a hydration strategy for use by female English field hockey players at the 1998 Commonwealth Games in Malaysia. An additional aim was to initiate the process of acclimation. Fifteen elite players, mean age (±SEM) 24.1 ± 1.19 years, height 1.67 ± 0.01 m, and body mass 62.8 ± 1.76 kg, took part in a 5-day training camp immediately prior to departure for the Games. In order to develop the hydration strategy, training took place under similar environmental conditions to those to be experienced in Malaysia (i.e., 32 °C, 80% humidity). Acclimation training consisted of 30–50 min of either continuous, low intensity cycling or high intensity intermittent cycling, which more closely replicated the pattern of activity in field hockey. Body mass measures taken each morning, and pre and post training, together with urine color measures, were used to assess hydration status. Pre-loading with up to 1 L of a 3% carbohydrate-electrolyte solution or water immediately prior to acclimation training, as well as regular drinks throughout, ensured that players avoided significant dehydration, with percent body mass changes ranging from −0.34% to +4.24% post training. Furthermore, the protocol used was sufficient to initiate the process of acclimation as demonstrated by a significant reduction in exercising heart rate and core temperature at all time points by days 4 and 5. In conclusion, although labor intensive and time consuming, the camp was successful in developing a hydration strategy that players were able to utilize once at the Games.

Restricted access

Lindsey Tulipani, Mark G. Boocock, Karen V. Lomond, Mahmoud El-Gohary, Duncan A. Reid, and Sharon M. Henry

Physical therapists evaluate patients’ movement patterns during functional tasks; yet, their ability to interpret these observations consistently and accurately is unclear. Physical therapists would benefit from a clinic-friendly method for accurately quantifying movement patterns during functional tasks. Inertial sensors, which are inexpensive, portable sensors capable of monitoring multiple body segments simultaneously, are a relatively new rehabilitation technology. We sought to validate an inertial sensor system by comparing lower limb and lumbar spine kinematic data collected simultaneously with a commercial inertial sensor system and a motion camera system while 10 subjects performed functional tasks. Mean and peak segment angular displacement data were calculated and compared between systems. Mean angular displacement root mean square error between the systems across all tasks and segments was <5°. Mean differences in peak displacements were generally acceptable (<5°) for the femur, tibia, and pelvis segments for all tasks; however, the inertial system overestimated lumbar flexion compared to the motion camera system. These data suggest that the inertial system is capable of measuring angular displacements within 5° of a system widely accepted for its accuracy. Standardization of sensor placement, better attachment methods, and improvement of inertial sensor algorithms will further increase the accuracy of the system.