Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Karl F. Orishimo x
Clear All Modify Search
Restricted access

Karl F. Orishimo and Ian J. Kremenic

The objective of this study was to measure adaptations in landing strategy during single-leg hops following thigh muscle fatigue. Kinetic, kinematic, and electromyographic data were recorded as thirteen healthy male subjects performed a single-leg hop in both the unfatigued and fatigued states. To sufficiently fatigue the thigh muscles, subjects performed at least two sets of 50 step-ups. Fatigue was assessed by measuring horizontal hopping ability following the protocol. Joint motion and loading, as well as muscle activation patterns, were compared between fatigued and unfatigued conditions. Fatigue significantly increased knee motion (p = 0.012) and shifted the ankle into a more dorsiflexed position (p = 0.029). Hip flexion was also reduced following fatigue (p = 0.042). Peak extension moment tended to decrease at the knee and increase at the ankle and hip (p = 0.014). Ankle plantar flexion moment at the time of peak total support moment increased from 0.8 (N⋅m)/kg (SD, 0.6 [N⋅m]/kg) to 1.5 (N⋅m)/kg (SD, 0.8 [N⋅m]/kg) (p = 0.006). Decreased knee moment and increased knee flexion during landings following fatigue indicated that the control of knee motion was compromised despite increased activation of the vastus medialis, vastus lateralis, and rectus femoris (p = 0.014, p = 0.014, and p = 0.017, respectively). Performance at the ankle increased to compensate for weakness in the knee musculature and to maintain lower extremity stability during landing. Investigating the biomechanical adaptations that occur in healthy subjects as a result of muscle fatigue may give insight into the compensatory mechanisms and loading patterns occurring in patients with knee pathology. Changes in single-leg hop landing performance could be used to demonstrate functional improvement in patients due to training or physical therapy.

Restricted access

Evangelos Pappas, Karl F. Orishimo, Ian Kremenic, Marijeanne Liederbach and Marshall Hagins

Retrospective studies have suggested that dancers performing on inclined (“raked”) stages have increased injury risk. One study suggests that biomechanical differences exist between flat and inclined surfaces during bilateral landings; however, no studies have examined whether such differences exist during unilateral landings. In addition, little is known regarding potential gender differences in landing mechanics of dancers. Professional dancers (N = 41; 14 male, 27 female) performed unilateral drop jumps from a 30 cm platform onto flat and inclined surfaces while extremity joint angles and moments were identified and analyzed. There were significant joint angle and moment effects due to the inclined flooring. Women had significantly decreased peak ankle dorsiflexion and hip adduction moment compared with men. Findings of the current study suggest that unilateral landings on inclined stages create measurable changes in lower extremity biomechanical variables. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.