Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Katherine T. Oberlin-Brown x
Clear All Modify Search
Restricted access

Katherine T. Oberlin-Brown, Rodney Siegel, Andrew E. Kilding and Paul B. Laursen

The oral presence of carbohydrate (CHO) and caffeine (CAF) may independently enhance exercise performance, but their influence on performance during prolonged exercise is less known.


To determine the independent and combined effects of CHO and CAF administered in chewing gum during a cycling time trial (TT) after prolonged exercise.


Eleven male cyclists (32.2 ± 7.5 y, 74.3 ± 6.8 kg, 60.2 ± 4.0 mL · kg–1 · min1 V˙O2peak) performed 4 experimental trials consisting of 90-min constant-load cycling at 80% of their second ventilatory threshold (207 ± 30 W), followed immediately by a 20-km TT. Under double-blinded conditions, cyclists received placebo (PLA), CHO, CAF, or a combined CHO+CAF chewing gum at 0-, 5-, 10-, and 15-km points of the TT.


Overall TT performance was similar across experimental and PLA trials (%mean difference ± 90%CL 0.2% ± 2.0%, 0.4% ± 2.2%, 0.1% ± 1.8% for CHO, CAF, and CHO+CAF). Compared with PLA, mean power output tended to be higher in the first 2 quarters of the TT with CHO (1.6% ± 3.1% and 0.8% ± 2.0%) and was substantially improved in the last 2 quarters during CAF and CHO+CAF trials (4.2% ± 3.0% and 2.0% ± 1.8%). There were no differences in average heart rate (ES <0.2) and only small changes in blood glucose (ES 0.2), which were unrelated to performance. Blood lactate was substantially higher post-TT for CAF and CHO+CAF (ES >0.6).


After prolonged constant-load cycling, the oral presence of CHO and CAF in chewing gum, independently or in combination, did not improve overall performance but did influence pacing.

Restricted access

Ana C. Holt, Daniel J. Plews, Katherine T. Oberlin-Brown, Fabrice Merien and Andrew E. Kilding

Purpose: To determine the effect of different high-intensity interval-training (IT) sessions on the postexercise recovery response and time course across varying recovery measures. Methods: A total of 13 highly trained rowers (10 male and 3 female, peak oxygen uptake during a 6-min maximal test 4.9 [0.7] L·min−1) completed 3 IT sessions on a rowing ergometer separated by 7 d. Sessions consisted of 5 × 3.5 min, 4-min rest periods (maximal oxygen uptake [VO2max]); 10 × 30 s, 5-min rest periods (glycolytic); and 5 × 10 min, 4-min rest periods (threshold). Participants were instructed to perform intervals at the highest maintainable pace. Blood lactate and salivary cortisol were measured preexercise and postexercise. Resting heart-rate (HR) variability, post-submaximal-exercise HR variability, submaximal-exercise HR, HR recovery, and modified Wingate peak and mean power were measured preexercise and 1, 10, 24, 34, 48, 58, and 72 h postexercise. Participants resumed training throughout the measurement period. Results: Between-groups short-term response differences (1 h post-IT) across IT sessions were trivial or unclear for all recovery variables. However, post-submaximal-exercise HR variability demonstrated the longest recovery time course (threshold = 37.8 [14.2], glycolytic = 20.2 [11.0], and VO2max = 20.6 [15.2]; mean [h] ± confidence limits). Conclusion: Short-term responses to threshold, glycolytic, and VO2max IT in highly trained male and female rowers were similar. Recovery time course was greatest following threshold compared with glycolytic and VO2max-focused training, suggesting a durational influence on recovery time course at HR intensities ≥80% HRmax. As such, this provides valuable information around the programming and sequencing of high-intensity IT for endurance athletes.