Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Keitaro Kubo x
Clear All Modify Search
Restricted access

Keitaro Kubo, Toshihiro Ikebukuro, Hideaki Yata, Naoya Tsunoda and Hiroaki Kanehisa

The purpose of this study was to compare the effects of resistance training on muscle and tendon properties between knee extensors and plantar flexors in vivo. Twenty healthy young men voluntarily participated in this study. The subjects were randomly divided into two training groups: knee extension group (n = 10) and plantar flexion group (n = 10). They performed five sets of exercises with a 1-min rest between sets, which consisted of unilateral knee extension for the knee extension group and plantar flexion for the plantar flexion group at 80% of 1 repetition maximum with 10 repetitions per set (4 days/wk, 12 wk). Before and after training, muscle strength, neural activation level (by interpolated twitch), muscle volume (by magnetic resonance imaging), and tendon stiffness (by ultrasonography) were measured. There were no differences in the training-induced increases in muscle strength, activation level, muscle volume, and tendon stiffness between knee extensors and plantar flexors. These results suggested that if the used protocol of training (i.e., intensity, repetition, etc.) were the same, there were no differences in the training-induced changes in muscle and tendon properties between knee extensors and plantar flexors.

Restricted access

Keitaro Kubo, Takanori Teshima, Norikazu Hirose and Naoya Tsunoda

The purpose of this study was to compare the morphological and mechanical properties of the human patellar tendon among elementary school children (prepubertal), junior high school students (pubertal), and adults. Twenty-one elementary school children, 18 junior high school students, and 22 adults participated in this study. The maximal strain, stiffness, Young’s modulus, hysteresis, and cross-sectional area of the patellar tendon were measured using ultrasonography. No significant difference was observed in the relative length (to thigh length) or cross-sectional area (to body mass2/3) of the patellar tendon among the three groups. Stiffness and Young’s modulus were significantly lower in elementary school children than in the other groups, while no significant differences were observed between junior high school students and adults. No significant differences were observed in maximal strain or hysteresis among the three groups. These results suggest that the material property (Young’s modulus) of the patellar tendons of elementary school children was lower than that of the other groups, whereas that of junior high school students was already similar to that of adults. In addition, no significant differences were observed in the extensibility (maximal strain) or viscosity (hysteresis) of the patellar tendon among the three groups.

Restricted access

Keitaro Kubo, Hiroaki Kanehisa and Tetsuo Fukunaga

The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 ± 2.8%) was significantly greater than that of the patella tendon (8.3 ± 2.4%), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 ± 1.4%) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 ± 1.4%), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.

Restricted access

Keitaro Kubo, Toshihiro Ikebukuro, Hideaki Yata, Minoru Tomita and Masaji Okada

The purpose of this study was to investigate muscle and tendon properties in highly trained sprinters and their relations to running performance. Fifteen sprinters and 15 untrained subjects participated in this study. Muscle thickness and tendon stiffness of knee extensors and plantar flexors were measured. Sprinter muscle thickness was significantly greater than that of the untrained subjects for plantar flexors, but not for knee extensors (except for the medial side). Sprinter tendon stiffness was significantly lower than that of the untrained subjects for knee extensors, but not for plantar flexors. The best official record of a 100-m race was significantly correlated to the muscle thickness of the medial side for knee extensors. In conclusion, the tendon structures of highly trained sprinters are more compliant than those of untrained subjects for knee extensors, but not for plantar flexors. Furthermore, a thicker medial side of knee extensors was associated with greater sprinting performance.

Restricted access

Yasuo Kawakami, Yoshiho Ichinose, Keitaro Kubo, Masamitsu Ito, Morihiro Imai and Tetsuo Fukunaga

This paper reviews three of our recent studies on human muscle architecture in vivo. 1. Hypertrophic changes: From B-mode ultrasonograms, pennation angles and thickness of triceps brachii were determined for normal subjects and highly-trained bodybuilders. There was a significant correlation between muscle thickness and pennation angles. It was confirmed that hypertrophy was accompanied by an increase in pennation angles. 2. Variation of fascicle architecture: Fascicle lengths and pennation angles were obtained from different positions in the gastrocnemius muscle while the subjects relaxed and performed isometric plantar flexion. The fascicle length was uniform throughout the muscle and shortened by contraction (30-34% at 50% of the maximal force). On the other hand, pennation angles differed among positions and increased by contraction. The muscle thickness did not change by contraction. Pen-nation angles were significantly correlated with muscle thickness within muscle. 3. Joint position-fascicle length relationships: Ultrasonic images of the gastrocnemius and soleus muscles were obtained while the subject performed maximal isometric plantarflexion at various joint positions, from which fascicle lengths and angles were determined. The length-force relationship of each muscle was estimated. It was suggested that human muscle architecture has an ability to make substantial changes to adapt to environmental conditions.

Restricted access

Keitaro Kubo, Teruaki Komuro, Noriko Ishiguro, Naoya Tsunoda, Yoshiaki Sato, Naokata Ishii, Hiroaki Kanehisa and and Tetsuo Fukunaga

The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.