Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Kevin Deighton x
Clear All Modify Search
Restricted access

Nessan Costello, Jim McKenna, Louise Sutton, Kevin Deighton and Ben Jones

Designing and implementing successful dietary intervention is integral to the role of sport nutrition professionals as they attempt to positively change the dietary behavior of athletes. High-performance sport is a time-pressured environment where immediate results can often supersede pursuit of the most effective evidence-based practice. However, efficacious dietary intervention necessitates comprehensive, systematic, and theoretical behavioral design and implementation, if the habitual dietary behaviors of athletes are to be positively changed. Therefore, this case study demonstrates how the Behaviour Change Wheel was used to design and implement an effective nutritional intervention within a professional rugby league. The eight-step intervention targeted athlete consumption of a high-quality dietary intake of 25.1 MJ each day to achieve an overall body mass increase of 5 kg across a 12-week intervention period. The capability, opportunity, motivation, and behavior model and affordability, practicability, effectiveness/cost-effectiveness, acceptability, safety, and equity criteria were used to identify population-specific intervention functions, policy categories, behavior change techniques, and modes of intervention delivery. The resulting intervention was successful, increasing the average daily energy intake of the athlete to 24.5 MJ, which corresponded in a 6.2 kg body mass gain. Despite consuming 0.6 MJ less per day than targeted, secondary outcome measures of diet quality, strength, body composition, and immune function all substantially improved, supporting sufficient energy intake and the overall efficacy of a behavioral approach. Ultimately, the Behaviour Change Wheel provides sport nutrition professionals with an effective and practical stepwise method to design and implement effective nutritional interventions for use within high-performance sport.

Restricted access

Sam Lowings, Oliver Michael Shannon, Kevin Deighton, Jamie Matu and Matthew John Barlow

Nitrate supplementation appears to be most ergogenic when oxygen availability is restricted and subsequently may be particularly beneficial for swimming performance due to the breath-hold element of this sport. This represents the first investigation of nitrate supplementation and swimming time-trial (TT) performance. In a randomized double-blind repeated-measures crossover study, ten (5 male, 5 female) trained swimmers ingested 140ml nitrate-rich (~12.5mmol nitrate) or nitrate-depleted (~0.01mmol nitrate) beetroot juice. Three hours later, subjects completed a maximal effort swim TT comprising 168m (8 × 21m lengths) backstroke. Preexercise fractional exhaled nitric oxide concentration was significantly elevated with nitrate compared with placebo, Mean (SD): 17 (9) vs. 7 (3)p.p.b., p = .008. Nitrate supplementation had a likely trivial effect on overall swim TT performance (mean difference 1.22s; 90% CI -0.18–2.6s; 0.93%; p = .144; d = 0.13; unlikely beneficial (22.6%), likely trivial (77.2%), most unlikely negative (0.2%)). The effects of nitrate supplementation during the first half of the TT were trivial (mean difference 0.29s; 90% CI -0.94–1.5s; 0.46%; p = .678; d = 0.05), but there was a possible beneficial effect of nitrate supplementation during the second half of the TT (mean difference 0.93s; 90% CI 0.13–1.70s; 1.36%; p = .062; d = 0.24; possibly beneficial (63.5%), possibly trivial (36.3%), most unlikely negative (0.2%)). The duration and speed of underwater swimming within the performance did not differ between nitrate and placebo (both p > .30). Nitrate supplementation increased nitric oxide bioavailability but did not benefit short-distance swimming performance or the underwater phases of the TT. Further investigation into the effects of nitrate supplementation during the second half of performance tests may be warranted.