Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Kevin R. Ford x
Clear All Modify Search
Restricted access

Kevin R. Ford, Gregory D. Myer, Laura C. Schmitt, Timothy L. Uhl and Timothy E. Hewett

The purpose of this study was to identify alterations in preparatory muscle activation patterns across different drop heights in female athletes. Sixteen female high school volleyball players performed the drop vertical jump from three different drop heights. Surface electromyography of the quadriceps and hamstrings were collected during the movement trials. As the drop height increased, muscle activation of the quadriceps during preparatory phase also increased (p < .05). However, the hamstrings activation showed no similar increases relative to drop height. Female athletes appear to preferentially rely on increased quadriceps activation, without an increase in hamstrings activation, with increased plyometric intensity. The resultant decreased activation ratio of the hamstrings relative to quadriceps before landing may represent altered dynamic knee stability and may contribute to the increased risk of ACL injury in female athletes.

Restricted access

Justin P. Waxman, Kevin R. Ford, Anh-Dung Nguyen and Jeffrey B. Taylor

Vertical stiffness may contribute to lower-extremity injury risk; however, it is unknown whether athletes with different stiffness levels display differences in biomechanics. This study compared differences in biomechanics between female athletes (n = 99) with varying stiffness levels during a repetitive, single-leg, vertical hopping task. Vertical stiffness was calculated as the ratio of peak vertical ground-reaction force to maximum center-of-mass displacement. Tertiles were established using stiffness values, and separate 1-way ANOVAs were used to evaluate between-group differences. Stance times decreased, and flight times, ground-reaction force, and stiffness increased, from the low- to high-stiffness group (P < .050). The high-stiffness group displayed: (1) greater lateral trunk flexion (P = .009) and lesser hip adduction (P = .022) at initial ground contact compared to the low- and moderate-stiffness groups, respectively; (2) lesser peak hip adduction compared to the low-stiffness group (P = .040); (3) lesser lateral trunk-flexion (P = .046) and knee-flexion (P = .010) excursion compared to the moderate- and low-stiffness groups, respectively; and (4) greater peak hip-flexion (P = .001), ankle-dorsiflexion (P = .002), and ankle-eversion (P = .038) moments compared to the low-stiffness group. A wide range of variability in stiffness exists within a relatively homogenous population. Athletes with varying stiffness levels display biomechanical differences that may help identify the potential mechanism(s) by which stiffness contributes to injury risk.

Restricted access

Anh-Dung Nguyen, Jeffrey B. Taylor, Taylor G. Wimbish, Jennifer L. Keith and Kevin R. Ford

Context: Hip-focused interventions are aimed to decrease frontal plane knee loading related to anterior cruciate ligament injuries. Whether a preferred hip landing strategy decreases frontal plane knee loading is unknown. Objective: To determine if a preferred hip landing strategy during a drop vertical jump (DVJ) is utilized during a single-leg landing (SLL) task and whether differences in frontal plane knee loading are consistent between a DVJ and an SLL task. Design: Descriptive laboratory study. Setting: Research laboratory. Participants: Twenty-three collegiate, female soccer players. Main Outcome Measures: Participants were dichotomized into a hip (HIP; n = 9) or knee/ankle (KA; n = 14) strategy group based on the percentage distribution of each lower extremity joint relative to the summated moment (% distribution) during the DVJ. Separate 1-way analysis of variances examined the differences in joint-specific % distribution and external knee abduction moment between the HIP and KA groups. Results: The HIP group had significantly greater % distribution of hip moment and less % distribution of knee moment compared with the KA group during the DVJ and SLL. External knee abduction moment was also significantly less in the HIP group compared with the KA group during the DVJ. Conclusions: Female soccer athletes who land with a preferred hip strategy during a DVJ also land with a preferred hip strategy during an SLL. The preferred hip strategy also resulted in less external knee abduction moments during the DVJ. Clinical Relevance: Targeting the neuromuscular control of the hip extensor may be useful in reducing risk of noncontact anterior cruciate ligament injuries.

Restricted access

Sara L. Arena, Kelsey McLaughlin, Anh-Dung Nguyen, James M. Smoliga and Kevin R. Ford

Athletic individuals may differ in body segment inertial parameter (BSIP) estimates due to differences in body composition, and this may influence calculation of joint kinetics. The purposes of this study were to (1) compare BSIPs predicted by the method introduced by de Leva1 with DXA-derived BSIPs in collegiate female soccer players, and (2) examine the effects of these BSIP estimation methods on joint moment and power calculations during a drop vertical jump (DVJ). Twenty female NCAA Division I soccer players were recruited. BSIPs of the shank and thigh (mass, COM location, and radius of gyration) were determined using de Leva’s method and analysis of whole-body DXA scans. These estimates were used to determine peak knee joint moments and power during the DVJ. Compared with DXA, de Leva’s method located the COM more distally in the shank (P = .008) and more proximally in the thigh (P < .001), and the radius of gyration of the thigh to be further from the thigh COM (P < .001). All knee joint moment and power measures were similar between methods. These findings suggest that BSIP estimation may vary between methods, but the impact on joint moment calculations during a dynamic task is negligible.

Restricted access

Jensen L. Brent, Gregory D. Myer, Kevin R. Ford, Mark V. Paterno and Timothy E. Hewett

Context:

As high school female athletes demonstrate a rate of noncontact anterior cruciate ligament (ACL) injury 3–6 times higher than their male counterparts, research suggests that sagittal-plane hip strength plays a role in factors associated with ACL injuries.

Objective:

To determine if gender or age affect hip-abductor strength in a functional standing position in young female and male athletes.

Design:

Prospective cohort design.

Setting:

Biomechanical laboratory.

Participants:

Over a 3-y time period, 852 isokinetic hip-abduction evaluations were conducted on 351 (272 female, 79 male) adolescent soccer and basketball players.

Intervention:

Before testing, athletes were secured in a standing position, facing the dynamometer head, with a strap secured from the uninvolved side and extending around the waist just above the iliac crest. The dynamometer head was positioned in line with the body in the coronal plane by aligning the axis of rotation of the dynamometer with the center of hip rotation. Subjects performed 5 maximum-effort repetitions at a speed of 120°/s. The peak torque was recorded and normalized to body mass. All test trials were conducted by a single tester to limit potential interrater test error.

Main Outcome Measure:

Standing isokinetic hip-abduction torque.

Results:

Hip-abduction torque increased in both males and females with age (P < .001) on both the dominant and nondominant sides. A significant interaction of gender and age was observed (P < .001), which indicated that males experienced greater increases in peak torque relative to body weight than did females as they matured.

Conclusions:

Males exhibit a significant increase in normative hip-abduction strength, while females do not. Future study may determine if the absence of similar increased relative hip-abduction strength in adolescent females, as they age, may be related to their increased risk of ACL injury compared with males.

Restricted access

Kevin R. Ford, Christopher A. DiCesare, Gregory D. Myer and Timothy E. Hewett

Context: Biofeedback training enables an athlete to alter biomechanical and physiological function by receiving biomechanical and physiological data concurrent with or immediately after a task. Objective: To compare the effects of 2 different modes of real-time biofeedback focused on reducing risk factors related to anterior cruciate ligament injury. Design: Randomized crossover study design. Setting: Biomechanics laboratory and sports medicine center. Participants: Female high school soccer players (age 14.8 ± 1.0 y, height 162.6 ± 6.8 cm, mass 55.9 ± 7.0 kg; n = 4). Intervention: A battery of kinetic- or kinematic-based real-time biofeedback during repetitive double-leg squats. Main Outcome Measures: Baseline and posttraining drop vertical jumps were collected to determine if either feedback method improved high injury risk landing mechanics. Results: Maximum knee abduction moment and angle during the landing was significantly decreased after kinetic-focused biofeedback (P = .04). The reduced knee abduction moment during the drop vertical jumps after kinematic-focused biofeedback was not different (P = .2). Maximum knee abduction angle was significantly decreased after kinetic biofeedback (P < .01) but only showed a trend toward reduction after kinematic biofeedback (P = .08). Conclusions: The innovative biofeedback employed in the current study reduced knee abduction load and posture from baseline to posttraining during a drop vertical jump.

Restricted access

Kevin R. Ford, Anh-Dung Nguyen, Eric J. Hegedus and Jeffrey B. Taylor

Virtual environments with real-time feedback can simulate extrinsic goals that mimic real life conditions. The purpose was to compare jump performance and biomechanics with a physical overhead goal (POG) and with a virtual overhead goal (VOG). Fourteen female subjects participated (age: 18.8 ± 1.1 years, height: 163.2 ± 8.1 cm, weight 63.0 ± 7.9 kg). Sagittal plane trunk, hip, and knee biomechanics were calculated during the landing and take-off phases of drop vertical jump with different goal conditions. Repeated-measures ANOVAs determined differences between goal conditions. Vertical jump height displacement was not different during VOG compared with POG. Greater hip extensor moment (P < .001*) and hip angular impulse (P < .004*) were found during VOG compared with POG. Subjects landed more erect with less magnitude of trunk flexion (P = .002*) during POG compared with VOG. A virtual target can optimize jump height and promote increased hip moments and trunk flexion. This may be a useful alternative to physical targets to improve performance during certain biomechanical testing, screening, and training conditions.

Restricted access

Gregory D. Myer, Kevin R. Ford and Timothy E. Hewett

Edited by Tricia J. Hubbard

Restricted access

Benjamin W. Stroube, Gregory D. Myer, Jensen L. Brent, Kevin R. Ford, Robert S. Heidt Jr. and Timothy E. Hewett

Context:

Anterior cruciate ligament (ACL) injuries are prevalent in female athletes. Specific factors have possible links to increasing a female athlete’s chances of suffering an ACL injury. However, it is unclear if augmented feedback may be able to decrease possible risk factors.

Objective:

To compare the effects of task-specific feedback on a repeated tuck-jump maneuver.

Design:

Double-blind randomized controlled trial.

Setting:

Sports-medicine biodynamics center.

Patients:

37 female subjects (14.7 ± 1.5 y, 160.9 ± 6.8 cm, 54.5 ± 7.2 kg).

Intervention:

All athletes received standard off-season training consisting of strength training, plyometrics, and conditioning. They were also videotaped during each session while running on a treadmill at a standardized speed (8 miles/h) and while performing a repeated tuck-jump maneuver for 10 s. The augmented feedback group (AF) received feedback on deficiencies present in a 10-s tuck jump, while the control group (CTRL) received feedback on 10-s treadmill running.

Main Outcome Measures:

Outcome measurements of tuck-jump deficits were scored by a blinded rater to determine the effects of group (CTRL vs AF) and time (pre- vs posttesting) on changes in measured deficits.

Results:

A significant interaction of time by group was noted with the task-specific feedback training (P = .03). The AF group reduced deficits measured during the tuck-jump assessment by 23.6%, while the CTRL training reduced deficits by 10.6%.

Conclusions:

The results of the current study indicate that task-specific feedback is effective for reducing biomechanical risk factors associated with ACL injury. The data also indicate that specific components of the tuck-jump assessment are potentially more modifiable than others.

Restricted access

Gregory D. Myer, Nathaniel A. Bates, Christopher A. DiCesare, Kim D. Barber Foss, Staci M. Thomas, Samuel C. Wordeman, Dai Sugimoto, Benjamin D. Roewer, Jennifer M. Medina McKeon, Stephanie L. Di Stasi, Brian W. Noehren, Michael McNally, Kevin R. Ford, Adam W. Kiefer and Timothy E. Hewett

Context:

Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable.

Objective:

To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities.

Design:

Multicenter reliability study.

Setting:

3 laboratories.

Patients:

25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period.

Intervention:

Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories.

Main Outcome Measures:

Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing.

Results:

Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94).

Conclusions:

CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.