Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Knoek van Soest x
Clear All Modify Search
Restricted access

Maarten F. Bobbert and A.J. “Knoek” van Soest

Prilutsky's paper is mainly concerned with the coordination of one- and two-joint muscles. This commentary on the paper addresses the question why we have two-joint muscles in the first place. From an evolutionary point of view, two-joint muscles must have contributed to fitness by presenting a solution to problems that could not be solved with musculoskeletal systems comprising only one-joint muscles. One such problem, not mentioned by Prilutsky, is the following. In a system equipped with only one-joint muscles, satisfying directional constraints would demand, in certain phases of movements, deactivation of muscles that are shortening. Consequently, the work output of these muscles would be limited. The incorporation of two-joint muscles helps to overcome this problem. The reason is that it offers the possibility to redistribute energy across joints, thereby making it possible to accomplish more successfully the difficult task of producing work while steering the movement.

Restricted access

Lotte L. Lintmeijer, A.J. “Knoek” van Soest, Freek S. Robbers, Mathijs J. Hofmijster and Peter J. Beek

Purpose: Athletes require feedback in order to comply with prescribed training programs designed to optimize their performance. In rowing, current feedback parameters on intensity are inaccurate. Mechanical power output is a suitable objective measure for training intensity, but due to movement restrictions related to crew rowing, it is uncertain whether crew rowers are able to adjust their intensity based on power-output feedback. The authors examined whether rowers improve compliance with prescribed power-output targets when visual real-time feedback on power output is provided in addition to commonly used feedback. Methods: A total of 16 crew rowers rowed in 3 training sessions. During the first 2 sessions, they received commonly used feedback, followed by a session with additional power-output feedback. Targets were set by their coaches before the experiment. Compliance was operationalized as accuracy (absolute difference between target and delivered power output) and consistency (high- and low-frequency variations in delivered power output). Results: Multilevel analyses indicated that accuracy and low-frequency variations improved by, respectively, 65% (P > .001) and 32% (P = .024) when additional feedback was provided. Conclusion: Compliance with power-output targets improved when crew rowers received additional feedback on power output. Two additional observations were made during the study that highlighted the relevance of power-output feedback for practice: There was a marked discrepancy between the prescribed targets and the actually delivered power output by the rowers, and coaches had difficulties perceiving improvements in rowers’ compliance with power-output targets.

Restricted access

Peter Beek, Maarten Bobbert, Gert de Groot, Peter Hollander, Jos de Koning, Knoek van Soest and Huub Toussaint