Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Kris Beattie x
Clear All Modify Search
Restricted access

Kris Beattie, Brian P. Carson, Mark Lyons and Ian C. Kenny

Maximum- and reactive-strength qualities both have important roles in athletic movements and sporting performance. Very little research has investigated the relationship between maximum strength and reactive strength. The aim of this study was to investigate the relationship between maximum-strength (isometric midthigh-pull peak force [IMTP PF]) and reactive-strength (drop-jump reactive-strength index [DJ-RSI]) variables at 0.3-m, 0.4-m, 0.5-m, and 0.6-m box heights. A secondary aim was to investigate the between- and within-group differences in reactive-strength characteristics between relatively stronger athletes (n = 11) and weaker athletes (n = 11). Forty-five college athletes across various sports were recruited to participate in the study (age, 23.7 ± 4.0 y; mass, 87.5 ± 16.1 kg; height, 1.80 ± 0.08 m). Pearson correlation results showed that there was a moderate association (r = .302–.431) between maximum-strength variables (absolute, relative, and allometric scaled PF) and RSI at 0.3, 0.4, 0.5 and 0.6 m (P ≤ .05). In addition, 2-tailed independent-samples t tests showed that the RSIs for relatively stronger athletes (49.59 ± 2.57 N/kg) were significantly larger than those of weaker athletes (33.06 ± 2.76 N/kg) at 0.4 m (Cohen d = 1.02), 0.5 m (d = 1.21), and 0.6 m (d = 1.39) (P ≤ .05). Weaker athletes also demonstrated significant decrements in RSI as eccentric stretch loads increased at 0.3-m through 0.6-m box heights, whereas stronger athletes were able to maintain their reactive-strength ability. This research highlights that in specific sporting scenarios, when there are high eccentric stretch loads and fast stretch-shortening-cycle demands, athletes’ reactive-strength ability may be dictated by their relative maximal strength, specifically eccentric strength.

Restricted access

Kris Beattie, Brian P. Carson, Mark Lyons and Ian C. Kenny

Cycling economy (CE), power output at maximal oxygen uptake (WV̇O2max), and anaerobic function (ie, sprinting ability) are considered the best physiological performance indicators in elite road cyclists. In addition to cardiovascular function, these physiological indicators are partly dictated by neuromuscular factors. One technique to improve neuromuscular function in athletes is through strength training. The aim of this study was to investigate the effect of a 20-wk maximal- and explosive-strength-training intervention on strength (maximal strength, explosive strength, and bike-specific explosive strength), WV̇O2max, CE, and body composition (body mass, fat and lean mass) in cyclists. Fifteen competitive road cyclists were divided into an intervention group (endurance training and strength training: n = 6; age, 38.0 ± 10.2 y; weight, 69.1 ± 3.6 kg; height, 1.77 ± 0.04 m) and a control group (endurance training only: n = 9; age, 34.8 ± 8.5 y; weight, 72.5 ± 7.2 kg; height, 1.78 ± 0.05 m). The intervention group strength-trained for 20 wk. Each participant completed 3 assessments: physiology (CE, WV̇O2max, power at 2 and 4 mmol/L blood lactate), strength (isometric midthigh pull, squat-jump height, and 6-s bike-sprint peak power), and body composition (body mass, fat mass, overall leanness, and leg leanness). The results showed significant between- and within-group changes in the intervention group for maximal strength, bike-specific explosive strength, absolute WV̇O2max, body mass, overall leanness, and leg leanness at wk 20 (P < .05). The control group showed no significant within-group changes in measures of strength, physiology, or body composition. This study demonstrates that 20 wk of strength training can significantly improve maximal strength, bike-specific explosive strength, and absolute WV̇O2max in competitive road cyclists.

Restricted access

Llion A. Roberts, Kris Beattie, Graeme L. Close and James P. Morton


To test the hypothesis that antioxidants can attenuate high-intensity interval training–induced improvements in exercise performance.


Two groups of recreationally active males performed a high-intensity interval running protocol, four times per week for 4 wk. Group 1 (n = 8) consumed 1 g of vitamin C daily throughout the training period, whereas Group 2 (n = 7) consumed a visually identical placebo. Pre- and posttraining, subjects were assessed for VO2max, 10 km time trial, running economy at 12 km/h and distance run on the YoYo intermittent recovery tests level 1 and 2 (YoYoIRT1/2). Subjects also performed a 60 min run before and after training at a running velocity of 65% of pretraining VO2max so as to assess training-induced changes in substrate oxidation rates.


Training improved (P < .0005) VO2max, 10 km time trial, running economy, YoYoIRT1 and YoYoIRT2 in both groups, although there was no difference (P = .31, 0.29, 0.24, 0.76 and 0.59) between groups in the magnitude of training-induced improvements in any of the aforementioned parameters. Similarly, training also decreased (P < .0005) mean carbohydrate and increased mean fat oxidation rates during submaximal exercise in both groups, although no differences (P = .98 and 0.94) existed between training conditions.


Daily oral consumption of 1 g of vitamin C during a 4 wk high-intensity interval training period does not impair training-induced improvements in the exercise performance of recreationally active males.