The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0–1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1–1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Kristie-Lee Taylor x
- Refine by Access: All Content x
Kristie-Lee Taylor, Will G. Hopkins, Dale W. Chapman, and John B. Cronin
Jeremy M. Sheppard, Tim Gabbett, Kristie-Lee Taylor, Jason Dorman, Alexis J. Lebedew, and Russell Borgeaud
Purpose:
The authors conducted a study to develop a repeated-effort test for international men’s volleyball. The test involved jumping and movement activity that was specific to volleyball, using durations and rest periods that replicated the demands of a match.
Methods:
A time–motion analysis was performed on a national team and development national team during international matches to determine the demands of competition and thereby form the basis of the rationale in designing the repeated-effort test. An evaluation of the test for reliability and validity in discriminating between elite and sub-elite players was performed.
Results:
The test jump height and movement-speed test parameters were highly reliable, with findings of high intraclass correlations (ICCs) and low typical errors of measurement (TE; ICC .93 to .95 and %TE 0.54 to 2.44). The national team’s ideal and actual jump height and ideal and actual speeds, mean ± SD, were 336.88 ± 8.31 cm, 329.91 ± 6.70 cm, 6.83 ± 0.34 s, and 7.14 ± 0.34 s, respectively. The development national team’s ideal and actual jump heights and ideal and actual speeds were 330.88 ± 9.09 cm, 323.80 ± 7.74 cm, 7.41 ± 0.56 s, and 7.66 ± 0.56 s, respectively. Probabilities of differences between groups for ideal jump, actual jump, ideal time, and actual time were 82%, 95%, 92%, and 96%, respectively, with a Cohen effect-size statistic supporting large magnitudes (0.69, 0.84, 1.34, and 1.13, respectively).
Conclusion:
The results of this study demonstrate that the developed test offers a reliable and valid method of assessing repeated-effort ability in volleyball players.
Kristie-Lee Taylor, John Cronin, Nicholas D. Gill, Dale W. Chapman, and Jeremy Sheppard
Purpose:
This investigation aimed to quantify the typical variation for kinetic and kinematic variables measured during loaded jump squats.
Methods:
Thirteen professional athletes performed six maximal effort countermovement jumps on four occasions. Testing occurred over 2 d, twice per day (8 AM and 2 PM) separated by 7 d, with the same procedures replicated on each occasion. Jump height, peak power (PP), relative peak power (RPP), mean power (MP), peak velocity (PV), peak force (PF), mean force (MF), and peak rate of force development (RFD) measurements were obtained from a linear optical encoder attached to a 40 kg barbell.
Results:
A diurnal variation in performance was observed with afternoon values displaying an average increase of 1.5–5.6% for PP, RPP, MP, PV, PF, and MF when compared with morning values (effect sizes ranging from 0.2–0.5). Day to day reliability was estimated by comparing the morning trials (AM reliability) and the afternoon trials (PM reliability). In both AM and PM conditions, all variables except RFD demonstrated coefficients of variations ranging between 0.8–6.2%. However, for a number of variables (RPP, MP, PV and height), AM reliability was substantially better than PM. PF and MF were the only variables to exhibit a coefficient of variation less than the smallest worthwhile change in both conditions.
Discussion:
Results suggest that power output and associated variables exhibit a diurnal rhythm, with improved performance in the afternoon. Morning testing may be preferable when practitioners are seeking to conduct regular monitoring of an athlete’s performance due to smaller variability.