Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Kurt Smith x
Clear All Modify Search
Restricted access

François Billaut and Kurt Smith

The ability to repeatedly generate maximum power output is usually accompanied by neuromuscular adjustments.

Purpose:

This study aimed to explore the occurrence of arterial O2 desaturation during prolonged repeated-sprint ability (RSA) testing and its relationship to neuromuscular activity, as evidenced by changes in surface integrated electromyogram (iEMG).

Methods:

Fifteen, national-level soccer players performed twenty 5-s cycle sprints (25 s of rest). Mechanical work and surface iEMG of the vastus lateralis (VL) and rectus femoris (RF) of the dominant lower limb were recorded for every sprint. Arterial O2 saturation (S O2) was estimated via pulse oximetry and rating of perceived exertion (RPE) recorded immediately after every sprint.

Results:

Over the sprints, mechanical work (23.5%), iEMG (VL: 14.2%, RF: 16.4%) and S O2 (3.5%) decreased, and RPE progressed to 19 (all P < .05). There was a strong linear relationship (R2 = .83, P < .05) between the changes in mechanical output and iEMG during the sprints. More importantly, changes in S O2 accompanied changes in mechanical work, iEMG and RPE (R2 = .68, R2 = .64, R2 = .62, P < .05, respectively).

Conclusion:

The study suggests that in a homogenous group of athletes a progressive arterial O2 desaturation develops during a prolonged RSA test, which may contribute toward performance regulation via an effect on sense of effort and neuromuscular activity.

Restricted access

Kurt J. Smith and François Billaut

Purpose:

To understand the role of O2 utilization in the sex differences of fatigue during intermittent activity, we compared the cerebral (prefrontal lobe) and muscle (vastus lateralis) oxygenation of men and women during repeated-sprint exercise (RSE).

Methods:

Ten men and 10 women matched for initial-sprint mechanical work performed ten, 10 s cycle sprints (with 30 s of rest) under normoxic (NM: 21% FIO2) and acute hypoxic (HY: 13% FIO2) conditions in a randomized single-blind and crossover design. Mechanical work was calculated and arterial O2 saturation (SpO2) was estimated via pulse oximetry during every sprint. Cerebral and muscle oxy- (O2Hb) and deoxy-hemoglobin (HHb) were monitored continuously by near-infrared spectroscopy.

Results:

Compared with NM, work decrement was accentuated (P = 0.01) in HY for both men (–16.4 ± 10.3%) and women (–16.8 ± 9.0%). This was associated with lower SpO2 and lower cerebral Δ[O2Hb] in both sexes (–13.6 ± 7.5%, P = .008, and –134.5 ± 73.8%, P = .003, respectively). These HY-induced changes were nearly identical in these men and women matched for initial-sprint work. Muscle Δ[HHb] increased 9-fold (P = .009) and 5-fold (P = .02) in men and women, respectively, and plateaued. This muscle deoxygenation was not exacerbated in HY.

Conclusions:

Results indicate that men and women matched for initial-sprint work experience similar levels of fatigue and systemic, cerebral, and peripheral adjustments during RSE performed in NM and HY. These data suggest that cerebral deoxygenation imposes a limitation to repeated-sprint performance.