Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Lauren A. Brown x
Clear All Modify Search
Restricted access

Lauren A. Brown, Eric E. Hall, Caroline J. Ketcham, Kirtida Patel, Thomas A. Buckley, David R. Howell and Srikant Vallabhajosula

Context: Sports often involve complex movement patterns, such as turning. Although cognitive load effects on gait patterns are well known, little is known on how it affects biomechanics of turning gait among athletes. Such information could help evaluate how concussion affects turning gait required for daily living and sports. Objective: To determine the effect of a dual task on biomechanics of turning while walking among college athletes. Design: Cross-sectional study. Setting: University laboratory. Participants: Fifty-three participants performed 5 trials of a 20-m walk under single- and dual-task conditions at self-selected speed with a 180° turn at 10-m mark. The cognitive load included subtraction, spelling words backward, or reciting the months backward. Interventions: Not applicable. Main Outcome Measures: Turn duration, turning velocity, number of steps, SD of turn duration and velocity, and coefficient of variation of turn duration and velocity. Results: Participants turned significantly slower (155.99 [3.71] cm/s vs 183.52 [4.17] cm/s; P < .001) and took longer time to complete the turn (2.63 [0.05] s vs 2.33 [0.04] s; P < .001) while dual tasking, albeit taking similar number of steps to complete the turn. Participants also showed more variability in turning time under the dual-task condition (SD of turn duration = 0.39 vs 0.31 s; P = .004). Conclusions: Overall, college athletes turned slower and showed more variability during turning gait while performing a concurrent cognitive dual-task turning compared with single-task turning. The slower velocity increased variability may be representative of specific strategy of turning gait while dual tasking, which may be a result of the split attention to perform the cognitive task. The current study provides descriptive values of absolute and variability turning gait parameters for sports medicine personnel to use while they perform their concussion assessments on their college athletes.

Restricted access

Gina Sobrero, Scott Arnett, Mark Schafer, Whitley Stone, T. A. Tolbert, Amanda Salyer-Funk, Jason Crandall, Lauren B. Farley, Josh Brown, Scott Lyons, Travis Esslinger, Keri Esslinger and Jill Maples

High intensity functional training (HIFT) emphasizes constantly varied, high intensity, functional activity by programming strength and conditioning exercises, gymnastics, Olympic weightlifting, and specialty movements. Conversely, traditional circuit training (TCT) programs aim to improve muscular fitness by utilizing the progressive overload principle, similar movements weekly, and specified work-to-rest ratios. The purpose of this investigation was to determine if differences exist in health and performance measures in women participating in HIFT or TCT after a six-week training program. Recreationally active women were randomly assigned to a HIFT (n = 8, age 26.0 + 7.3 yrs) or TCT (n = 11, age 26.3 + 9.6 yrs) group. Participants trained three days a week for six weeks with certified trainers. Investigators examined body composition (BC), aerobic and anaerobic capacity, muscular strength, endurance, flexibility, power, and agility. Repeated-measures ANOVA were used for statistical analyses with an alpha level of 0.05. Both groups increased body mass (p = .011), and improved muscular endurance (p < .000), upper body strength (p = .007), lower body power (p = .029) and agility (p = .003). In addition, the HIFT group decreased body fat (BF) %, while the TCT group increased BF% (p = .011). No changes were observed in aerobic or anaerobic capacity, flexibility, upper body power, or lower body stair climbing power. Newer, high intensity functional exercise programs such as HIFT may have better results on BC and similar effects when compared with TCT programs on health and fitness variables such as musculoskeletal strength and performance.