Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Laurent Schmitt x
Clear All Modify Search
Restricted access

Laurent Schmitt, Stéphane Bouthiaux and Grégoire P. Millet

Purpose: To report the changes in the training characteristics, performance, and heart-rate variability (HRV) of the world’s most successful male biathlete of the last decade. Method: During the analyzed 11-year (2009–2019) period, the participant won 7 big crystal globes, corresponding to the winner of the International Biathlon Union World Cup. The training characteristics are reported as yearly volume (in hours) of low-intensity training (LIT), moderate- and high-intensity training, and speed and strength training. Performance was quantified by the number of World Cup top-3 positions per season. HRV was expressed as low- and high-frequency spectral power (in milliseconds squared), root-mean-square difference of successive R–R interval (in milliseconds), and heart rate (in beats per minute). Results: The training volume increased from 530 to ∼700 hours per year in 2009–2019, with a large polarization in training intensity distribution (ie, LIT 86.3% [2.9%]; moderate-intensity training 3.4% [1.5%]; high-intensity training 4.0% [0.7%]; strength 6.3% [1.6%]). The number of top-3 positions increased from 2 to 24–26 in 2009–2018 but decreased to 6 in 2019. The mean supine values in the root-mean-square difference of successive R–R interval and high-frequency spectral power divided by heart rate increased until 2015, which were stable over 2016–2018 but decreased in 2019. The number of top-3 positions was related to the total (r = .66, P = .02) and LIT (r = .92, P < .001) volume and to several markers of supine parasympathetic activity. Conclusion: The improvement in performance of the participant was mainly determined by the progressive increase in training volume, especially performed at low intensity, and was correlated to parasympathetic activity markers. This case study confirms the effectiveness of the training method, with a large amount of LIT in an elite endurance athlete, and of regular HRV monitoring.

Restricted access

Laurent Schmitt, Jean-Pierre Fouillot, Gérard Nicolet and Alain Midol

Opuntia ficus indica (OFI) has many physiological effects, but a relationship between OFI and heart-rate variability (HRV) has never been established. The aim of this study was to describe the effects of a diet supplement of OFI on HRV in athletes. The first day, heart rate (HR) was measured at rest in supine (SU) and standing (ST) positions to analyze HRV in 10 athletes, followed by a randomized assignment to an OFI (5) or placebo (5) group. The next day, the athletes repeated the HRV test. One month later the crossover protocol was applied. In OFI, the high-frequency-activity HFSU (1,773 ± 2,927 vs. 5,856 ± 8,326 ms2, p < .05), HFST (295 ± 313 vs. 560 ± 515 ms2, p < .05), and low-frequency LFSU (1,621 ± 1,795 vs. 6,029 ± 9,007 ms2, p < .01) increased. HRSU (66 ± 13 vs. 57 ± 11 beats/min, p < .01) and HRST (87 ± 11 vs. 76 ± 9 beats/min, p < .01) decreased. A diet supplement of OFI increases HF and LF activities and decreases HR.