Purpose: Continuous glucose monitors (CGMs) are becoming increasingly popular among endurance athletes despite unconfirmed accuracy. We assessed the concurrent validity of the FreeStyle Libre 2 worn on 2 different sites at rest, during steady-state running, and postprandial. Methods: Thirteen nondiabetic, well-trained recreational runners (age = 40 [8] y, maximal aerobic oxygen consumption = 46.1 [6.4] mL·kg–1·min–1) wore a CGM on the upper arm and chest while treadmill running for 30, 60, and 90 minutes at intensities corresponding to 50%, 60%, and 70% of maximal aerobic oxygen consumption, respectively. Glucose was measured by manually scanning CGMs and obtaining a finger-prick capillary blood glucose sample. Mean absolute relative difference, time in range, and continuous glucose Clarke error grid analysis were used to compare paired CGM and blood glucose readings. Results: Across all intensities of steady-state running, we found a mean absolute relative difference of 13.8 (10.9) for the arm and 11.4 (9.0) for the chest. The coefficient of variation exceeded 70%. Approximately 47% of arm and 50% of chest paired glucose measurements had an absolute difference ≤10%. Continuous glucose Clarke error grid analysis indicated 99.8% (arm) and 99.6% (chest) CGM data fell in clinically acceptable zones A and B. Time-in-range analysis showed reduced accuracy at lower glucose levels. However, CGMs accurately detected trends in mean glucose readings over time. Conclusions: CGMs are not valid for point glucose monitoring but appear to be valid for monitoring glucose trends during steady-state exercise. Accuracy is similar for arm and chest. Further research is needed to determine whether CGMs can detect important events such as hypoglycemia during exercise.
Search Results
You are looking at 1 - 1 of 1 items for
- Author: Lesley J. Mason x
- Refine by Access: All Content x