Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Lex B. Verdijk x
Clear All Modify Search
Restricted access

Jean M. Nyakayiru, Kristin L. Jonvik, Philippe J.M. Pinckaers, Joan Senden, Luc J.C. van Loon and Lex B. Verdijk

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

Restricted access

Kristin L. Jonvik, Jean Nyakayiru, Jan-Willem van Dijk, Floris C. Wardenaar, Luc J.C. van Loon and Lex B. Verdijk

Although beetroot juice, as a nitrate carrier, is a popular ergogenic supplement among athletes, nitrate is consumed through the regular diet as well. We aimed to assess the habitual dietary nitrate intake and identify the main contributing food sources in a large group of highly trained athletes. Dutch highly trained athletes (226 women and 327 men) completed 2–4 web-based 24-hr dietary recalls and questionnaires within a 2- to 4-week period. The nitrate content of food products and food groups was determined systematically based on values found in regulatory reports and scientific literature. These were then used to calculate each athlete’s dietary nitrate intake from the web-based recalls. The median[IQR] habitual nitrate intake was 106[75–170] mg/d (range 19–525 mg/d). Nitrate intake correlated with energy intake (ρ = 0.28, p < .001), and strongly correlated with vegetable intake (ρ = 0.78, p < .001). In accordance, most of the dietary nitrate was consumed through vegetables, potatoes and fruit, accounting for 74% of total nitrate intake, with lettuce and spinach contributing most. When corrected for energy intake, nitrate intake was substantially higher in female vs male athletes (12.8[9.2–20.0] vs 9.4[6.2–13.8] mg/MJ; p < .001). This difference was attributed to the higher vegetable intake in female vs male athletes (150[88–236] vs 114[61–183] g/d; p < .001). In conclusion, median daily intake of dietary nitrate in highly trained athletes was 106 mg, with large interindividual variation. Dietary nitrate intake was strongly associated with the intake of vegetables. Increasing the intake of nitrate-rich vegetables in the diet might serve as an alternative strategy for nitrate supplementation.

Restricted access

Michael Tieland, Lex B. Verdijk, Lisette C.P.G.M. de Groot and Luc J.C. van Loon

Introduction:

Although handgrip strength is considered a strong predictor of negative health outcomes, it is unclear whether handgrip strength represents a useful measure to evaluate changes in muscle strength following resistance-type exercise training in older people. We assessed whether measuring handgrip strength provides proper insight in the efficacy of resistance-type exercise training to increase muscle mass, strength, and physical performance in frail older people.

Methods:

Prefrail and frail older people (≥ 65 y) were either conducting a 24-week resistance-type exercise training or no exercise training. Before, during, and after the intervention, handgrip strength (JAMAR), lean body mass (DXA), leg strength (1-RM), and physical performance (SPPB) were assessed.

Results:

Handgrip strength correlated with appendicular lean mass (r = 0.68; p < .001) and leg strength (r = 0.67; p < .001). After 24 weeks of whole body resistance-type exercise training, leg extension strength improved significantly better when compared with the control group (57 ± 2–78 ± 3 kg vs 57 ± 3–65 ± 3 kg: p < .001). Moreover, physical performance improved significantly more in the exercise group (8.0 ± 0.4–9.3 ± 0.4 points) when compared with the control group (8.3 ± 0.4–8.9 ± 0.4 points: p < .05). These positive changes were not accompanied with any significant changes in handgrip strength (26.3 ± 1.2–27.6 ± 1.2 kg in the exercise group vs 26.6 ± 1.2–26.3 ± 1.3 kg in the control group: p = .71).

Conclusion:

Although handgrip strength strongly correlates with muscle mass and leg strength in frail older people, handgrip strength does not provide a valid means to evaluate the efficacy of exercise intervention programs to increase muscle mass or strength in an older population.

Restricted access

Kristin L. Jonvik, Jan-Willem van Dijk, Joan M.G. Senden, Luc J.C. van Loon and Lex B. Verdijk

Nitrate-rich beetroot juice is thought to have ergogenic effects, particularly in conditions where oxygen availability is limited. Whether these effects also apply to elite athletes is currently unknown. The aim of this study was to assess the effects of beetroot juice supplementation on dynamic apnea and intermittent sprint performance in elite female water polo players. In a double-blinded, randomized, crossover manner, the Dutch National female water polo team (N = 14) was subjected to two 6-day supplementation periods (1 and 2), with either 140 ml/day of nitrate-rich (BR; ∼800 mg/day nitrate) or nitrate-depleted (PLA) beetroot juice. Following blood sampling on Day 6, the athletes performed a maximal-distance front crawl swimming test without breathing (dynamic apnea test). In addition, intermittent sprint performance was assessed by performing 16 swim sprints of 15 m, in a 4 × 4 block with 30-s recovery between blocks (intermittent test). Distance covered during the dynamic apnea test did not differ between BR (49.5 ± 7.8 m) and PLA (46.9 ± 9.1 m, p = .178). However, when correcting for test order, the distance covered was significantly larger in BR versus PLA when BR was ingested in Period 2 (50.1 ± 8.5 vs. 42.8 ± 5.7 m, p = .002), whereas no difference was observed when BR was ingested in Period 1 (48.8 ± 7.4 vs. 52.3 ± 10.4 m, p = .10). The time to complete the intermittent test was not different between BR and PLA (316.0 ± 7.9 vs. 316.3 ± 6.9 s, p = .73). In conclusion, beetroot juice supplementation does not improve intermittent performance in elite female water polo players, but there may be a potential for ergogenic effects during dynamic apnea.