Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Liang Tang x
Clear All Modify Search
Restricted access

Aiping Chi, Liang Tang, Jing Zhang and Kunru Zhang


To investigate the effects of polysaccharide from Gynostemma pentaphyllum on antioxidant activity in skeletal muscle of mice exercised to exhaustion.


Three polysaccharide fractions were obtained from G. pentaphyllum polysaccharide (GPP) and termed GPP1-a, GPP2-b, and GPP3-a. Gas chromatography (GC) and infrared spectrum of the polysaccharides were determined. The fractions were orally administrated to mice once daily for 1 wk. The exercise time to exhaustion was assessed using a forced swim test of mice after a week. The glucose, creatine phosphokinase, and lactic dehydrogenase in serum; the activity of superoxide dismutase and glutathione peroxidase; and the levels of malondialdehyde (MDA) and glycogen in muscle were determined.


The results of GC demonstrated that GPP1-a, GPP2-b, and GPP3-a were composed of different monosaccharides with distinct molar ratios. Infrared spectrum showed that the main typicals of GPP1-a and GPP2-b were β-configuration and the main typical of GPP3-a was α-configuration. Among the 3 fractions of GPP, GPP1-a administration significantly prolonged exercise time to exhaustion of mice, increased glycogen level and some of antioxidant enzyme activities, and decreased MDA level in muscle.


The mechanism by which GPP1-a prolonged exercise time to exhaustion in mice may be associated with scavenging reactive oxygen species excessively produced and further increasing glycogen levels in skeletal muscle.

Restricted access

Liang Tang, Xiaohang Gao, Xiaoying Yang, Didi Zhang, Xiaojun Zhang, Haiping Du, Yanqi Han and Lijun Sun

Weight-bearing exercise is beneficial to bone health. Myostatin (MSTN) deficiency has a positive effect on bone formation. We wondered if a combination of weight-bearing training and polyclonal antibody for MSTN (MsAb) would augment bone formation to a greater degree than single treatment. In this study, rats were randomly assigned to four groups: Control, weight-bearing training (WT), MsAb, and WT+MsAb. The trained rats ran at 15 m/min bearing with 35% of their body weight, 40 min/day (2 min of running followed by 2 min of rest), 6 days/week, for 8 weeks. The rats with MsAb were injected once a week with MsAb for 8 weeks. MicroCT analysis showed that compared with the MsAb group, WT+MsAb significantly enhanced cortical bone mineral density (BMD) (p < .01), bone volume over total volume (BV/TV) (p < .01), trabecular thickness (p < .05), and reduced trabecular separation (Tb.Sp) (p < .01). Compared with the WT group, WT+MsAb significantly increased trabecular BMD (p < .05), BV/TV (p < .05), and decreased Tb.Sp (p < .05). Three-point bending test demonstrated that MsAb failed to improve bone biomechanical properties (p > .05), weight-bearing training significantly increased energy absorption (p < .05) and elastic modulus (p < .05). However, when they combined, biomechanical properties including maximum load (p < .05), stiffness (p < .05), elastic modulus (p < .01) and energy absorption (p < .01) were all significantly enhanced. In conclusion, the combination of weight-bearing training and MsAb have a greater positive effect on bone than treatment with either MsAb or weight-bearing training alone, suggesting that resistance training in combination with MSTN antagonists could be an effective approach for improving bone health and reducing osteoporosis risk.

Restricted access

Yin-Chou Lin, Angela Thompson, Jung-Tang Kung, Liang-Wei Chieh, Shih-Wei Chou and Jung-Charng Lin


Elbow injuries are widely reported among baseball players. The elbow is susceptible to injury when elbow-flexor and -extensor forces are imbalanced during pitching or throwing. Assessment of muscle-strength ratios may prove useful for diagnosing elbow injury.


The purpose of this study was to assess the relationship between the elbow-flexor and -extensor functional isokinetic ratios and elbow injury in baseball players.


Retrospective study.


Biomechanics laboratory.


College baseball players with (n = 9) and without (n = 12) self-reported elbow pain or loss of strength were recruited.

Intervention and Main Outcome Measures:

Trials were conducted using a dynamometer to assess dominant-arm flexor and extensor concentric and eccentric strength at angular velocities of 60° and 240°/s. Functional isokinetic ratios were calculated and compared between groups.


Regression analysis revealed that a ratio of biceps concentric to triceps concentric strength greater than 0.76 (the median value) significantly predicted elbow injury (P = .01, odds ratio of injury = 24). No other ratios or variables (including position played) were predictive of injury status.


These findings suggest that the ratio of biceps concentric to triceps concentric functional strength strongly predicts elbow-injury status in baseball players. Assessment of this ratio may prove useful in a practical setting for training purposes and both injury diagnosis and rehabilitation.