Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Lindsey Miller x
Clear All Modify Search
Restricted access

John Quindry, Lindsey Miller, Graham McGinnis, Brian Kliszczewiscz, Dustin Slivka, Charles Dumke, John Cuddy and Brent Ruby

Previous research findings indicate that environmental temperature can influence exercise-induced oxidative-stress responses, although the response to variable temperatures is unknown. The purpose of this study was to investigate the effect of warm, cold, and “neutral,” or room, environmental temperatures on the blood oxidative stress associated with exercise and recovery. Participants (N = 12, age 27 ± 5 yr, VO2max = 56.7 ± 5.8 ml · kg-1 · min-1, maximal cycle power output = 300 ± 39 W) completed 3 exercise sessions consisting of a 1-hr ride at 60% Wmax, at 40% relative humidity in warm (33 °C), cold (7 °C), and room-temperature environments (20 °C) in a randomized crossover fashion. Rectal core temperature was monitored continually as participants remained in the respective trial temperature throughout a 3-hr recovery. Blood was collected preexercise and immediately, 1 hr, and 3 hr postexercise and analyzed for oxidative-stress markers including ferric-reducing ability of plasma (FRAP), Trolox-equivalent antioxidant capacity (TEAC), lipid hydroperoxides, and protein carbonyls. Core temperature was significantly elevated by all exercise trials, but recovery core temperatures reflected the given environment. FRAP (p < .001), TEAC (p < .001), and lipid hydroperoxides (p < .001) were elevated after warm exercise while protein carbonyls were not altered (p > .05). These findings indicate that moderate-intensity exercise and associated recovery in a warm environment elicits a blood oxidative-stress response not observed at comparable exercise performed at lower temperatures.

Restricted access

Marcos Daou, Taylor L. Buchanan, Kyle R. Lindsey, Keith R. Lohse and Matthew W. Miller

There is some evidence that people learn academic (declarative) information better when studying with the expectation of having to teach, but this has not been demonstrated for perceptual-motor skills, which also rely on declarative information but more heavily on procedural knowledge. To address this possibility, participants studied golf-putting instructions and practiced putting with the expectation of having to teach another participant how to putt or the expectation of being tested on their putting. One day later, learning was assessed by testing all participants on their golf putting. Results revealed that expecting to teach enhanced learning, even after controlling for the amount of studying and practicing. Therefore, we have presented the first findings that expecting to teach enhances motor learning. Taking these findings together with similar studies focusing on declarative information, we suggest that expecting to teach yields a general learning benefit to different types of skills.

Restricted access

John Quindry, Lindsey Miller, Graham McGinnis, Megan Irwin, Charles Dumke, Meir Magal, N. Travis Triplett, Jeffrey McBride and Zea Urbiztondo

Acute strength exercise elicits a transient oxidative stress, but the factors underlying the magnitude of this response remain unknown. The purpose of this investigation was to determine whether muscle-fiber type relates to the magnitude of blood oxidative stress after eccentric muscle activity. Eleven college-age men performed 3 sets of 50 eccentric knee-extensions. Blood samples taken pre-, post-, and 24, 48, 72, and 96 hr postexercise were assayed for comparison of muscle damage and oxidative-stress biomarkers including protein carbonyls (PCs). Vastus lateralis muscle biopsies were assayed for relative percentage of slow- and fast-twitch muscle fibers. There was a mixed fiber composition (Type I = 39.6% ± 4.5%, Type IIa = 35.7% ± 3.5%, Type IIx = 24.8% ± 3.8%; p = .366). PCs were elevated 24, 48, and 72 hr (p = .032) postexercise, with a peak response of 126% (p = .012) above baseline, whereas other oxidative-stress biomarkers were unchanged. There are correlations between Type II muscle-fiber type and postexercise PC. Further study is needed to understand the mechanisms responsible for the observed fast-twitch muscle-fiber oxidative-stress relationship.

Restricted access

Lindsey E. Miller, Graham R. McGinnis, Brian Kliszczewicz, Dustin Slivka, Walter Hailes, John Cuddy, Charles Dumke, Brent Ruby and John C. Quindry

Oxidative stress occurs as a result of altitude-induced hypobaric hypoxia and physical exercise. The effect of exercise on oxidative stress under hypobaric hypoxia is not well understood.

Purpose:

To determine the effect of high-altitude exercise on blood oxidative stress. Nine male participants completed a 2-d trek up and down Mt Rainer, in North America, at a peak altitude of 4,393 m. Day 1 consisted of steady-pace climbing for 6.25 hr to a final elevation of 3,000 m. The 4,393-m summit was reached on Day 2 in approximately 5 hr. Climb–rest intervals varied but were consistent between participants, with approximately 14 hr of total time including rest periods. Blood samples were assayed for biomarkers of oxidative stress and antioxidant potential at the following time points: Pre (before the trek), 3Kup (at ascent to 3,000 m), 3Kdown (at 3,000 m on the descent), and Post (posttrek at base elevation). Blood serum variables included ferric-reducing antioxidant potential (FRAP), Trolox equivalent antioxidant capacity (TEAC), protein carbonyls (PC), and lipid hydroperoxides. Serum FRAP was elevated at 3Kup and 3Kdown compared with Pre and Post values (p = .004, 8% and 11% increase from Pre). Serum TEAC values were increased at 3Kdown and Post (p = .032, 10% and 18% increase from Pre). Serum PC were elevated at 3Kup and 3Kdown time points (p = .034, 194% and 138% increase from Pre), while lipid hydroperoxides were elevated Post only (p = .004, 257% increase from Pre).

Conclusions:

Findings indicate that high-altitude trekking is associated with increased blood oxidative stress.