Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Llion A. Roberts x
Clear All Modify Search
Restricted access

Llion A. Roberts, Kris Beattie, Graeme L. Close and James P. Morton

Purpose:

To test the hypothesis that antioxidants can attenuate high-intensity interval training–induced improvements in exercise performance.

Methods:

Two groups of recreationally active males performed a high-intensity interval running protocol, four times per week for 4 wk. Group 1 (n = 8) consumed 1 g of vitamin C daily throughout the training period, whereas Group 2 (n = 7) consumed a visually identical placebo. Pre- and posttraining, subjects were assessed for VO2max, 10 km time trial, running economy at 12 km/h and distance run on the YoYo intermittent recovery tests level 1 and 2 (YoYoIRT1/2). Subjects also performed a 60 min run before and after training at a running velocity of 65% of pretraining VO2max so as to assess training-induced changes in substrate oxidation rates.

Results:

Training improved (P < .0005) VO2max, 10 km time trial, running economy, YoYoIRT1 and YoYoIRT2 in both groups, although there was no difference (P = .31, 0.29, 0.24, 0.76 and 0.59) between groups in the magnitude of training-induced improvements in any of the aforementioned parameters. Similarly, training also decreased (P < .0005) mean carbohydrate and increased mean fat oxidation rates during submaximal exercise in both groups, although no differences (P = .98 and 0.94) existed between training conditions.

Conclusions:

Daily oral consumption of 1 g of vitamin C during a 4 wk high-intensity interval training period does not impair training-induced improvements in the exercise performance of recreationally active males.

Restricted access

Llion A. Roberts, Johnpaul Caia, Lachlan P. James, Tannath J. Scott and Vincent G. Kelly

Purpose: External counterpulsation (ECP) has previously been used to treat cardiac patients via compression of the lower extremities during diastole to increase venous return and coronary perfusion. However, the effects of ECP on exercise performance and markers of recovery in elite athletes are largely unknown. Methods: On 2 separate occasions, 48 h apart, 7 elite National Rugby League players performed an identical 60-min field-based conditioning session followed by a 30-min period of either regular ECP treatment or placebo. Power measures during repeated cycle bouts and countermovement jump height and contraction time derivatives were measured at rest and 5 h postexercise. Saliva samples and venous blood samples were taken at rest, postexercise, and 5 h postexercise to assess stress, inflammation, and muscle damage. Results: After ECP treatment, cycling peak power output (P = .028; 11%) and accumulated peak power (P = .027; 14%) increased compared with the placebo condition. Postexercise plasma interleukin 1 receptor antagonist only increased after ECP (P = .024; 84%), and concentrations of plasma interleukin 1 receptor antagonist tended to be higher (P = .093; 76%) 5 h postexercise. Furthermore, testosterone-to-cortisol ratio was increased above baseline and placebo 5 h postexercise (P = .017–.029; 24–77%). The ratio of postexercise salivary α-amylase to immunoglobulin A decreased after treatment (P = .013; 50%) compared with the placebo control. Conclusions: Exercise performance and hormonal indicators of stress were improved and inflammation markers were reduced following acute ECP.