Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Louis Passfield x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Louis Passfield and James G. Hopker

This paper explores the notion that the availability and analysis of large data sets have the capacity to improve practice and change the nature of science in the sport and exercise setting. The increasing use of data and information technology in sport is giving rise to this change. Web sites hold large data repositories, and the development of wearable technology, mobile phone applications, and related instruments for monitoring physical activity, training, and competition provide large data sets of extensive and detailed measurements. Innovative approaches conceived to more fully exploit these large data sets could provide a basis for more objective evaluation of coaching strategies and new approaches to how science is conducted. An emerging discipline, sports analytics, could help overcome some of the challenges involved in obtaining knowledge and wisdom from these large data sets. Examples of where large data sets have been analyzed, to evaluate the career development of elite cyclists and to characterize and optimize the training load of well-trained runners, are discussed. Careful verification of large data sets is time consuming and imperative before useful conclusions can be drawn. Consequently, it is recommended that prospective studies be preferred over retrospective analyses of data. It is concluded that rigorous analysis of large data sets could enhance our knowledge in the sport and exercise sciences, inform competitive strategies, and allow innovative new research and findings.

Restricted access

Daniel J. Madigan, Joachim Stoeber, and Louis Passfield

Perfectionism in sports has been shown to be associated with burnout in athletes. Whether perfectionism predicts longitudinal changes in athlete burnout, however, is still unclear. Using a two-wave cross-lagged panel design, the current study examined perfectionistic strivings, perfectionistic concerns, and athlete burnout in 101 junior athletes (mean age 17.7 years) over 3 months of active training. When structural equation modeling was employed to test a series of competing models, the best-fitting model showed opposite patterns for perfectionistic strivings and perfectionistic concerns. Whereas perfectionistic concerns predicted increases in athlete burnout over the 3 mon ths, perfectionistic strivings predicted decreases. The present findings suggest that perfectionistic concerns are a risk factor for junior athletes contributing to the development of athlete burnout whereas perfectionistic strivings appear to be a protective factor.

Restricted access

Daniel J. Madigan, Joachim Stoeber, and Louis Passfield

Perfectionism in sports has been shown to predict longitudinal changes in athlete burnout. What mediates these changes over time, however, is still unclear. Adopting a self-determination theory perspective and using a three-wave longitudinal design, the current study examined perfectionistic strivings, perfectionistic concerns, autonomous motivation, controlled motivation, and athlete burnout in 141 junior athletes (mean age = 17.3 years) over 6 months of active training. When multilevel structural equation modeling was employed to test a mediational model, a differential pattern of between- and within-person relationships emerged. Whereas autonomous motivation mediated the negative relationship that perfectionistic strivings had with burnout at the between- and within-person level, controlled motivation mediated the positive relationship that perfectionistic concerns had with burnout at the between-persons level only. The present findings suggest that differences in autonomous and controlled motivation explain why perfectionism predicts changes in athlete burnout over time.

Restricted access

Antonis Kesisoglou, Andrea Nicolò, and Louis Passfield

Purpose: To examine the effect of cycling exercise intensity and duration on subsequent performance and to compare the resulting acute performance decrement (APD) with total work done (TWD) and corresponding training-load (TL) metrics. Methods: A total of 14 male cyclists performed a 5-minute time trial (TT) as a baseline and after 4 initial exercise bouts of varying exercise intensity and duration. The initial exercise bouts were performed in a random order and consisted of a 5- and a 20-minute TT and a 20- and a 40-minute submaximal ride. The resulting APD was calculated as the percentage change in 5-minute TT from baseline, and this was compared with the TWD and TL metrics for the corresponding initial exercise bout. Results: Average power output was different for each of the 4 initial exercise bouts (ηp2=.971; P < .001), and all bouts resulted in an APD. But APD was only different when comparing maximal with submaximal bouts (ηp2=.862; P < .001). The APD contradicted TWD and TL metrics and was not different when comparing 5- and 20-minute maximal TTs or the 20- and 40-minute submaximal bouts. In contrast, TL metrics were different for all training sessions (ηp2=.970; P < .001). Conclusion: An APD is found after initial exercise bouts consisting of 5- and 20-minute TTs and after 20- and 40-minute of submaximal exercise that is not consistent with the corresponding values for TWD or TL. This discrepancy highlights important shortcomings when using TWD and TL to compare exercise bouts of different intensity and duration.

Restricted access

Richard Ebreo, Louis Passfield, and James Hopker

Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions.

Restricted access

Marco Arkesteijn, Simon Jobson, James Hopker, and Louis Passfield

Background:

Previous research has shown that cycling in a standing position reduces cycling economy compared with seated cycling. It is unknown whether the cycling intensity moderates the reduction in cycling economy while standing.

Purpose:

The aim was to determine whether the negative effect of standing on cycling economy would be decreased at a higher intensity.

Methods:

Ten cyclists cycled in 8 different conditions. Each condition was either at an intensity of 50% or 70% of maximal aerobic power at a gradient of 4% or 8% and in the seated or standing cycling position. Cycling economy and muscle activation level of 8 leg muscles were recorded.

Results:

There was an interaction between cycling intensity and position for cycling economy (P = .03), the overall activation of the leg muscles (P = .02), and the activation of the lower leg muscles (P = .05). The interaction showed decreased cycling economy when standing compared with seated cycling, but the difference was reduced at higher intensity. The overall activation of the leg muscles and the lower leg muscles, respectively, increased and decreased, but the differences between standing and seated cycling were reduced at higher intensity.

Conclusions:

Cycling economy was lower during standing cycling than seated cycling, but the difference in economy diminishes when cycling intensity increases. Activation of the lower leg muscles did not explain the lower cycling economy while standing. The increased overall activation, therefore, suggests that increased activation of the upper leg muscles explains part of the lower cycling economy while standing.

Restricted access

Erin Calaine Inglis, Danilo Iannetta, Louis Passfield, and Juan M. Murias

Purpose: To (1) compare the power output (PO) for both the 20-minute functional threshold power (FTP20) field test and the calculated 95% (FTP95%) with PO at maximal lactate steady state (MLSS) and (2) evaluate the sensitivity of FTP95% and MLSS to training-induced changes. Methods: Eighteen participants (12 males: 37 [6] y and 6 females: 28 [6] y) performed a ramp-incremental cycling test to exhaustion, 2 to 3 constant-load MLSS trials, and an FTP20 test. A total of 10 participants returned to repeat the test series after 7 months of training. Results: The PO at FTP20 and FTP95% was greater than that at MLSS (P = .00), with the PO at MLSS representing 88.5% (4.8%) and 93.1% (5.1%) of FTP and FTP95%, respectively. MLSS was greater at POST compared with PRE training (12 [8] W) (P = .002). No increase was observed in mean PO at FTP20 and FTP95% (P = .75). Conclusions: The results indicate that the PO at FTP95% is different to MLSS, and that changes in the PO at MLSS after training were not reflected by FTP95%. Even when using an adjusted percentage (ie, 88% rather than 95% of FTP20), the large variability in the data is such that it would not be advisable to use this as a representation of MLSS.

Restricted access

Antonis Kesisoglou, Andrea Nicolò, Lucinda Howland, and Louis Passfield

Purpose: To examine the effect of continuous (CON) and intermittent (INT) running training sessions of different durations and intensities on subsequent performance and calculated training load (TL). Methods: Runners (N = 11) performed a 1500-m time trial as a baseline and after completing 4 different running training sessions. The training sessions were performed in a randomized order and were either maximal for 10 minutes (10CON and 10INT) or submaximal for 25 minutes (25CON and 25INT). An acute performance decrement (APD) was calculated as the percentage change in 1500-m time-trial speed measured after training compared with baseline. The pattern of APD response was compared with that for several TL metrics (bTRIMP, eTRIMP, iTRIMP, running training stress score, and session rating of perceived exertion) for the respective training sessions. Results: Average speed (P < .001, ηp2=.924) was different for each of the initial training sessions, which all resulted in a significant APD. This APD was similar when compared across the sessions except for a greater APD found after 10INT versus 25CON (P = .02). In contrast, most TL metrics were different and showed the opposite response to APD, being higher for CON versus INT and lower for 10- versus 25-minute sessions (P < .001, ηp2>.563). Conclusion: An APD was observed consistently after running training sessions, but it was not consistent with most of the calculated TL metrics. The lack of agreement found between APD and TL suggests that current methods for quantifying TL are flawed when used to compare CON and INT running training sessions of different durations and intensities.

Restricted access

Andy Galbraith, James Hopker, Stephen Lelliott, Louise Diddams, and Louis Passfield

Purpose:

To compare critical speed (CS) measured from a single-visit field test of the distance–time relationship with the “traditional” treadmill time-to-exhaustion multivisit protocol.

Methods:

Ten male distance runners completed treadmill and field tests to calculate CS and the maximum distance performed above CS (D′). The field test involved 3 runs on a single visit to an outdoor athletics track over 3600, 2400, and 1200 m. Two field-test protocols were evaluated using either a 30-min recovery or a 60-min recovery between runs. The treadmill test involved runs to exhaustion at 100%, 105%, and 110% of velocity at VO2max, with 24 h recovery between runs.

Results:

There was no difference in CS measured with the treadmill and 30-min- and 60-minrecovery field tests (P < .05). CS from the treadmill test was highly correlated with CS from the 30- and 60-min-recovery field tests (r = .89, r = .82; P < .05). However there was a difference and no correlation in D′ between the treadmill test and the 30 and 60-min-recovery field tests (r = .13; r = .33, P > .05). A typical error of the estimate of 0.14 m/s (95% confidence limits 0.09–0.26 m/s) was seen for CS and 88 m (95% confidence limits 60–169 m) for D′. A coefficient of variation of 0.4% (95% confidence limits: 0.3–0.8%) was found for repeat tests of CS and 13% (95% confidence limits 10–27%) for D′.

Conclusion:

The single-visit method provides a useful alternative for assessing CS in the field.

Restricted access

Andy Galbraith, James Hopker, Marco Cardinale, Brian Cunniffe, and Louis Passfield

Purpose:

To examine the training and concomitant changes in laboratory- and field-test performance of highly trained endurance runners.

Methods:

Fourteen highly trained male endurance runners (mean ± SD maximal oxygen uptake [VO2max] 69.8 ± 6.3 mL · kg−1 · min−1) completed this 1-y training study commencing in April. During the study the runners undertook 5 laboratory tests of VO2max, lactate threshold (LT), and running economy and 9 field tests to determine critical speed (CS) and the modeled maximum distance performed above CS (D′). The data for different periods of the year were compared using repeated-measures ANOVA. The influence of training on laboratory- and field-test changes was analyzed by multiple regression.

Results:

Total training distance varied during the year and was lower in May–July (333 ± 206 km, P = .01) and July–August (339 ± 206 km, P = .02) than in the subsequent January–February period (474 ± 188 km). VO2max increased from the April baseline (4.7 ± 0.4 L/min) in October and January periods (5.0 ± 0.4 L/min, P ≤ .01). Other laboratory measures did not change. Runners’ CS was lowest in August (4.90 ± 0.32 m/s) and highest in February (4.99 ± 0.30 m/s, P = .02). Total training distance and the percentage of training time spent above LT velocity explained 33% of the variation in CS.

Conclusion:

Highly trained endurance runners achieve small but significant changes in VO2max and CS in a year. Increases in training distance and time above LT velocity were related to increases in CS.