Search Results

You are looking at 1 - 10 of 15 items for

  • Author: Louise Martin x
Clear All Modify Search
Restricted access

Andrew Renfree, Louise Martin, Ashley Richards and Alan St Clair Gibson

Purpose:

This study examined individual contributions to overall pacing strategy during 2- and 5-km rowing trials in a coxless-4 boat.

Methods:

A crew of 4 male rowers performed maximal-effort on-water trials over 2 and 5 km, and power output during every individual stroke was measured for each crew member. Mean overall boat and individual rower stroke power were calculated for each 25% epoch (25% of total strokes taken), and power for each individual epoch was calculated as a percentage of mean power maintained over the entire distance. The coefficient of variation was used to determine stroke-to-stroke and epoch-to-epoch variability for individual rowers and the overall boat.

Results:

In both trials, the overall pacing strategy consisted of a high power output in the initial 25% that decreased in the middle 50% and increased again in the final 25%. However, individual rower data indicate wide variation in individual power profiles that did not always mimic the overall boat profile.

Conclusions:

This study demonstrates that overall boat power profiles during 2- and 5-km rowing trials are similar to velocity profiles previously reported for individual ergometry and on-water racing events. However, this overall profile is achieved despite considerable variation in individual rower profiles. Further research is warranted to determine the mechanisms through which individual contributions to overall pacing strategy are regulated and the effectiveness or otherwise of seemingly disparate individual strategies on overall performance.

Restricted access

Louise Martin, Alan M. Nevill and Kevin G. Thompson

Purpose:

Fast swim times in morning rounds are essential to ensure qualification in evening finals. A significant time-of-day effect in swimming performance has consistently been observed, although physical activity early in the day has been postulated to reduce this effect. The aim of this study was to compare intradaily variation in race-pace performance of swimmers routinely undertaking morning and evening training (MEG) with those routinely undertaking evening training only (EOG).

Methods:

Each group consisted of 8 swimmers (mean ± SD: age = 15.2 ± 1.0 and 15.4 ± 1.4 y, 200-m freestyle time 132.8 ± 8.4 and 136.3 ± 9.1 s) who completed morning and evening trials in a randomized order with 48 h in between on 2 separate occasions. Oral temperature, heart rate, and blood lactate were assessed at rest, after a warm-up, after a 150-m race-pace swim, and after a 100-m time trial. Stroke rate, stroke count, and time were recorded for each length of the 150-m and 100-m swims.

Results:

Both training groups recorded significantly slower morning 100-m performances (MEG = +1.7 s, EOG = +1.4 s; P < .05) along with persistently lower morning temperatures that on average were –0.47°C and –0.60°C, respectively (P < .05). No differences were found in blood-lactate, heart-rate, and stroke-count responses (P > .05). All results were found to be reproducible (P > .05).

Conclusions:

The long-term use of morning training does not appear to significantly reduce intradaily variation in race-pace swimming or body temperature.

Restricted access

Mary K. Martin, David T. Martin, Gregory R. Collier and Louise M. Burke

We estimated self-reported energy intake (EI) and cycling energy expenditure (CEE) during racing and training over 26 days (9 days recovery [REC], 9 days training [TRN], and 8 days racing [RACE], which included a 5-day stage race) for 8 members of the Australian National Training Squad [mean ± SD; 25.1 ± 4.0 years, 59.2 ± 4.4 kg, 3.74 ± 0.24 L · min−1 V̇O2peak, 13.6 ± 4.5 % Body fat (%Bfat)]. After 70 days of training and racing, average body mass increased by 1.1 kg (95%CI 0.5 to 1.7 kg; p < .01) and average %Bfat decreased by 0.9% (95%CI –1.7 to –0.1%; p < .05). These minor changes, however, were not considered clinically significant. CEE was different between RACE, TRN, and REC (2.15 ± 0.18 vs. 1.73 ± 0.25 vs. 0.72 ± 0.15 MJ · d−1, p < .05). Reported EI for RACE and TRN were higher than REC (14.87 ± 3.03, 13.70 ± 4.04 vs.11.98 ± 3.57 MJ · d−1, p < .05). Reported intake of carbohydrate for RACE and TRN were also higher than REC (588 ± 122, 536 ± 130 vs. 448 ± 138 g · d−1, p < .05). Reported intake of fat (59 ± 21–68 ± 21 g · d−1) was similar during RACE, TRN, and REC, whereas protein intake tended to be higher during TRN (158 ± 49 g · d−1) compared to RACE and REC (136 ± 33; 130 ± 33 g · d−1). There was a relationship between average CEE and average EI over the 26 days (r = 0.77, p < .05), but correlations between CEE and EI for each of the women varied (r =–0.02 to 0.67). There was a strong trend for an inverse relationship between average EI and %Bfat (r = –.68, p = .06, n = 8). In this study, increases in reported EI during heavy training and racing were the result of an increase in carbohydrate intake. Most but not all cyclists modulated EI based on CEE. Research is required to determine whether physiological or psychological factors are primarily responsible for the observed relationship between CEE and EI and also the inverse correlation between %Bfat and EI.

Restricted access

Martin D. Hoffman, Kristin J. Stuempfle, Ian R. Rogers, Louise B. Weschler and Tamara Hew-Butler

Purpose:

To determine the incidence of exercise-associated hyponatremia (EAH), the associated biochemical measurements and risk factors for EAH, and whether there is an association between postrace blood sodium concentration ([Na+]) and changes in body mass among participants in the 2009 Western States Endurance Run, a 161-km mountain trail run.

Methods:

Change in body mass, postrace [Na+], and blood creatine phosphokinase (CPK) concentration, and selected runner characteristics were evaluated among consenting competitors.

Results:

Of the 47 study participants, 14 (30%) had EAH as defined by a postrace [Na+] <135 mmol/L. Postrace [Na+] and percent change in body mass were directly related (r = .30, P = .044), and 50% of those with EAH had body mass losses of 3–6%. EAH was unrelated to age, sex, finish time, or use of nonsteroidal anti-inflammatory drugs during the run, but those with EAH had completed a smaller (P = .03) number of 161-km ultramarathons. The relationship of CPK levels to postrace [Na+] did not reach statistical significance (r = –.25, P = .097).

Conclusions:

EAH was common (30%) among finishers of this 161-km ultramarathon and it was not unusual for those with EAH to be dehydrated. As such, changes in body mass should not be relied upon in the assessment for EAH during 161-km ultramarathons.

Restricted access

Milou Beelen, Louise M. Burke, Martin J. Gibala and Luc J.C. van Loon

During postexercise recovery, optimal nutritional intake is important to replenish endogenous substrate stores and to facilitate muscle-damage repair and reconditioning. After exhaustive endurance-type exercise, muscle glycogen repletion forms the most important factor determining the time needed to recover. Postexercise carbohydrate (CHO) ingestion has been well established as the most important determinant of muscle glycogen synthesis. Coingestion of protein and/or amino acids does not seem to further increase muscle glycogensynthesis rates when CHO intake exceeds 1.2 g · kg−1 · hr−1. However, from a practical point of view it is not always feasible to ingest such large amounts of CHO. The combined ingestion of a small amount of protein (0.2–0.4 g · (0.2−0.4 g · kg−1 · hr−1) with less CHO (0.8 g · kg−1 · hr−1) stimulates endogenous insulin release and results in similar muscle glycogen-repletion rates as the ingestion of 1.2 g · kg−1 · hr−1 CHO. Furthermore, postexercise protein and/or amino acid administration is warranted to stimulate muscle protein synthesis, inhibit protein breakdown, and allow net muscle protein accretion. The consumption of ~20 g intact protein, or an equivalent of ~9 g essential amino acids, has been reported to maximize muscle protein-synthesis rates during the first hours of postexercise recovery. Ingestion of such small amounts of dietary protein 5 or 6 times daily might support maximal muscle protein-synthesis rates throughout the day. Consuming CHO and protein during the early phases of recovery has been shown to positively affect subsequent exercise performance and could be of specific benefit for athletes involved in multiple training or competition sessions on the same or consecutive days.

Open access

Louise M. Burke, Asker E. Jeukendrup, Andrew M. Jones and Martin Mooses

Distance events in Athletics include cross country, 10,000-m track race, half-marathon and marathon road races, and 20- and 50-km race walking events over different terrain and environmental conditions. Race times for elite performers span ∼26 min to >4 hr, with key factors for success being a high aerobic power, the ability to exercise at a large fraction of this power, and high running/walking economy. Nutrition-related contributors include body mass and anthropometry, capacity to use fuels, particularly carbohydrate (CHO) to produce adenosine triphosphate economically over the duration of the event, and maintenance of reasonable hydration status in the face of sweat losses induced by exercise intensity and the environment. Race nutrition strategies include CHO-rich eating in the hours per days prior to the event to store glycogen in amounts sufficient for event fuel needs, and in some cases, in-race consumption of CHO and fluid to offset event losses. Beneficial CHO intakes range from small amounts, including mouth rinsing, in the case of shorter events to high rates of intake (75–90 g/hr) in the longest races. A personalized and practiced race nutrition plan should balance the benefits of fluid and CHO consumed within practical opportunities, against the time, cost, and risk of gut discomfort. In hot environments, prerace hyperhydration or cooling strategies may provide a small but useful offset to the accrued thermal challenge and fluid deficit. Sports foods (drinks, gels, etc.) may assist in meeting training/race nutrition plans, with caffeine, and, perhaps nitrate being used as evidence-based performance supplements.

Restricted access

Eric C. Haakonssen, David T. Martin, Louise M. Burke and David G. Jenkins

Body composition in a female road cyclist was measured using dual-energy X-ray absorptiometry (5 occasions) and anthropometry (10 occasions) at the start of the season (Dec to Mar), during a period of chronic fatigue associated with poor weight management (Jun to Aug), and in the following months of recovery and retraining (Aug to Nov). Dietary manipulation involved a modest reduction in energy availability to 30–40 kcal · kg fat-free mass−1 · d−1 and an increased intake of high-quality protein, particularly after training (20 g). Through the retraining period, total body mass decreased (−2.82 kg), lean mass increased (+0.88 kg), and fat mass decreased (−3.47 kg). Hemoglobin mass increased by 58.7 g (8.4%). Maximal aerobic- and anaerobic-power outputs were returned to within 2% of preseason values. The presented case shows that through a subtle energy restriction associated with increased protein intake and sufficient energy intake during training, fat mass can be reduced with simultaneous increases in lean mass, performance gains, and improved health.

Full access

Louise M. Burke, Graeme L. Close, Bronwen Lundy, Martin Mooses, James P. Morton and Adam S. Tenforde

Low energy availability (LEA) is a key element of the Female Athlete Triad. Causes of LEA include failure to match high exercise energy expenditure (unintentional) or pathological behaviors of disordered eating (compulsive) and overzealous weight control programs (misguided but intentional). Recognition of such scenarios in male athletes contributed to the pronouncement of the more inclusive Relative Energy Deficiency in Sport (RED-S) syndrome. This commentary describes the insights and experience of the current group of authors around the apparently heightened risk of LEA in some populations of male athletes: road cyclists, rowers (lightweight and open weight), athletes in combat sports, distance runners, and jockeys. The frequency, duration, and magnitude of the LEA state appear to vary between populations. Common risk factors include cyclical management of challenging body mass and composition targets (including “making weight”) and the high energy cost of some training programs or events that is not easily matched by energy intake. However, additional factors such as food insecurity and lack of finances may also contribute to impaired nutrition in some populations. Collectively, these insights substantiate the concept of RED-S in male athletes and suggest that a specific understanding of a sport, subpopulation, or culture may identify a complex series of factors that can contribute to LEA and the type and severity of its outcomes. This commentary provides a perspective on the range of risk factors that should be addressed in future surveys of RED-S in athletic populations and targeted for specific investigation and modification.

Restricted access

Eric C. Haakonssen, David T. Martin, David G. Jenkins and Louise M. Burke

Purpose:

This study investigated the satisfaction of elite female cyclists with their body weight (BW) in the context of race performance, the magnitude of BW manipulation, and the association of these variables with menstrual function.

Methods:

Female competitors in the Australian National Road Cycling Championships (n = 32) and the Oceania Championships (n = 5) completed a questionnaire to identify current BW, BW fluctuations, perceived ideal BW for performance, frequency of weight consciousness, weight-loss techniques used, and menstrual regularity.

Results:

All but 1 cyclist reported that female cyclists are “a weight-conscious population,” and 54% reported having a desire to change BW at least once weekly; 62% reported that their current BW was not ideal for performance. Their perceived ideal BW was (mean ± SD) 1.6 ± 1.6 kg (2.5% ± 2.5%) less than their current weight (P < .01), and 73% reported that their career-lowest BW was either “beneficial” or “extremely beneficial” for performance. 65% reported successfully reducing BW in the previous 12 months with a mean loss of 2.4 ± 1.0 kg (4.1% ± 1.9%). The most common weight-loss technique was reduced energy intake (76%). Five cyclists (14%) had been previously diagnosed as having an eating disorder by a physician. Of the 18 athletes not using a hormonal contraceptive, 11 reported menstrual dysfunction (oligomenorrhea or amenorrhea).

Conclusion:

Elite Australian female cyclists are a weight-conscious population who may not be satisfied with their BW leading into a major competition and in some cases are frequently weight conscious.

Restricted access

Joanne E. Folker, Bruce E. Murdoch, Louise M. Cahill, Kristin M. Rosen, Martin B. Delatycki, Louise A. Corben and Adam P. Vogel

Electropalatography (EPG) was used to describe the pattern of linguopalatal contact and the consonant phase durations exhibited by a group of seven individuals with dysarthria associated with Friedreich’s ataxia (FRDA). A group of 14 non-neurologically impaired individuals served as controls. The Reading Electropalatograph (EPG3) system was used to record linguopalatal contact during production of the target consonants (/t/, /l/, /s/, /k/) elicited in five words of CV and CVC construction, with the target consonants in word initial position. These words were embedded into short sentences and repeated five times by each participant. The FRDA group exhibited significantly increased consonant durations compared with the controls while maintaining normal linguopalatal contact patterns. These findings suggest that the articulatory impairment in FRDA manifests as a temporal rather than spatial disturbance.