Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Louise Sutton x
Clear All Modify Search
Restricted access

Nessan Costello, Jim McKenna, Louise Sutton, Kevin Deighton and Ben Jones

Designing and implementing successful dietary intervention is integral to the role of sport nutrition professionals as they attempt to positively change the dietary behavior of athletes. High-performance sport is a time-pressured environment where immediate results can often supersede pursuit of the most effective evidence-based practice. However, efficacious dietary intervention necessitates comprehensive, systematic, and theoretical behavioral design and implementation, if the habitual dietary behaviors of athletes are to be positively changed. Therefore, this case study demonstrates how the Behaviour Change Wheel was used to design and implement an effective nutritional intervention within a professional rugby league. The eight-step intervention targeted athlete consumption of a high-quality dietary intake of 25.1 MJ each day to achieve an overall body mass increase of 5 kg across a 12-week intervention period. The capability, opportunity, motivation, and behavior model and affordability, practicability, effectiveness/cost-effectiveness, acceptability, safety, and equity criteria were used to identify population-specific intervention functions, policy categories, behavior change techniques, and modes of intervention delivery. The resulting intervention was successful, increasing the average daily energy intake of the athlete to 24.5 MJ, which corresponded in a 6.2 kg body mass gain. Despite consuming 0.6 MJ less per day than targeted, secondary outcome measures of diet quality, strength, body composition, and immune function all substantially improved, supporting sufficient energy intake and the overall efficacy of a behavioral approach. Ultimately, the Behaviour Change Wheel provides sport nutrition professionals with an effective and practical stepwise method to design and implement effective nutritional interventions for use within high-performance sport.

Restricted access

Mathew Hillier, Louise Sutton, Lewis James, Dara Mojtahedi, Nicola Keay and Karen Hind

The practice of rapid weight loss (RWL) in mixed martial arts (MMA) is an increasing concern but data remain scarce. The aim of this study was to investigate the prevalence, magnitude, methods, and influencers of RWL in professional and amateur MMA athletes. MMA athletes (N = 314; 287 men and 27 women) across nine weight categories (strawweight to heavyweight), completed a validated questionnaire adapted for this sport. Sex-specific data were analyzed, and subgroup comparisons were made between athletes competing at professional and amateur levels. Most athletes purposefully reduced body weight for competition (men: 97.2%; women: 100%). The magnitude of RWL in 1 week prior to weigh-in was significantly greater for professional athletes compared with those competing at amateur level (men: 5.9% vs. 4.2%; women: 5.0% vs. 2.1% of body weight; p < .05). In the 24 hr preceding weigh-in, the magnitude of RWL was greater at professional than amateur level in men (3.7% vs. 2.5% of body weight; p < .05). Most athletes “always” or “sometimes” used water loading (72.9%), restricting fluid intake (71.3%), and sweat suits (55.4%) for RWL. Coaches were cited as the primary source of influence on RWL practices (men: 29.3%; women: 48.1%). There is a high reported prevalence of RWL in MMA, at professional and amateur levels. Our findings, constituting the largest inquiry to date, call for urgent action from MMA organizations to safeguard the health and well-being of athletes competing in this sport.

Restricted access

Deborah R. Smith, Ben Jones, Louise Sutton, Roderick F.G.J. King and Lauren C. Duckworth

Good nutrition is essential for the physical development of adolescent athletes, however data on dietary intakes of adolescent rugby players are lacking. This study quantified and evaluated dietary intake in 87 elite male English academy rugby league (RL) and rugby union (RU) players by age (under 16 (U16) and under 19 (U19) years old) and code (RL and RU). Relationships of intakes with body mass and composition (sum of 8 skinfolds) were also investigated. Using 4-day diet and physical activity diaries, dietary intake was compared with adolescent sports nutrition recommendations and the UK national food guide. Dietary intake did not differ by code, whereas U19s consumed greater energy (3366 ± 658 vs. 2995 ± 774 kcal·day-1), protein (207 ± 49 vs. 150 ± 53 g·day-1) and fluid (4221 ± 1323 vs. 3137 ± 1015 ml·day-1) than U16s. U19s consumed a better quality diet than U16s (greater intakes of fruit and vegetables; 4.4 ± 1.9 vs. 2.8 ± 1.5 servings·day-1; nondairy proteins; 3.9 ± 1.1 vs. 2.9 ± 1.1 servings·day-1) and less fats and sugars (2.0 ± 1. vs. 3.6 ± 2.1 servings·day-1). Protein intake vs. body mass was moderate (r = .46, p < .001), and other relationships were weak. The findings of this study suggest adolescent rugby players consume adequate dietary intakes in relation to current guidelines for energy, macronutrient and fluid intake. Players should improve the quality of their diet by replacing intakes from the fats and sugars food group with healthier choices, while maintaining current energy, and macronutrient intakes.

Restricted access

Deborah Fearnley, Louise Sutton, John O’Hara, Amy Brightmore, Roderick King and Carlton Cooke

The Vendée Globe is a solo round-the-world sailing race without stopovers or assistance, a physically demanding challenge for which appropriate nutrition should maintain energy balance and ensure optimum performance. This is an account of prerace nutritional preparation with a professional and experienced female racer and assessment of daily nutritional intake (NI) during the race using a multimethod approach. A daily energy intake (EI) of 15.1 MJ/day was recommended for the race and negotiated down by the racer to 12.7 MJ/day, with carbohydrate and fluid intake goals of 480 g/day and 3,020 ml/day, respectively. Throughout the 99-day voyage, daily NI was recorded using electronic food diaries and inventories piloted during training races. NI was assessed and a postrace interview and questionnaire were used to evaluate the intervention. Fat mass (FM) and fat-free mass (FFM) were assessed pre- (37 days) and postrace (11 days) using dual-energy X-ray absorptiometry, and body mass was measured before the racer stepped on the yacht and immediately postrace. Mean EI was 9.2 MJ/day (2.4–14.3 MJ/day), representing a negative energy balance of 3.5 MJ/day under the negotiated EI goal, evidenced by a 7.9-kg loss of body mass (FM –7.5 kg, FFM –0.4 kg) during the voyage, with consequent underconsumption of carbohydrate by ~130 g/day. According to the postrace yacht food inventory, self-reported EI was underreported by 7%. This intervention demonstrates the practicality of the NI approach and assessment, but the racer’s nutrition strategy can be further improved to facilitate meeting more optimal NI goals for performance and health. It also shows that evaluation of NI is possible in this environment over prolonged periods, which can provide important information for optimizing nutritional strategies for ocean racing.