Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Luis Peñailillo x
Clear All Modify Search
Restricted access

Luis Peñailillo, Karen Mackay and Chris R. Abbiss

Despite the terms’ often being used interchangeably, it has been suggested that perceptions of effort and perceptions of exertion may differ. Eccentric (ECC) cycling may provide a model of exercise by which differences between these perceptions can be examined. Purpose: To examine and compare perceptions of effort and exertion during ECC and concentric (CONC) cycling at 4 intensities. Methods: Ten healthy male participants (mean [SD]: age = 29.8 [2.3] y) performed an incremental cycling test for the determination of maximal aerobic power output, followed in a randomized and crossover design, by four 5-min bouts (30%, 60%, 80%, and maximal) of either ECC or CONC cycling. Through each bout, participants were asked to report their perceived effort, exertion, and muscle pain. Heart rate and oxygen consumption were continuously recorded throughout each bout. Results: Perceived exertion was greater for CONC at 30% (8.5 [1.5] vs 7.1 [1.8]; P = .01), 60% (12.4 [1.4] vs 10.3 [2.0]; P = .01), 80% (15.8 [1.7] vs 12.4 [2.5]; P < .01), and maximal (17.2 [1.3] vs 15.6 [1.8]; P = .03) in comparison with ECC. Perceptions of effort and pain were similar between CONC and ECC. Heart rate and oxygen consumption were greater during CONC than ECC. Conclusions: Perceived exertion was greater during CONC compared with ECC cycling, yet effort was similar between conditions despite different physiological stress. Such findings have implications for understanding the development of such perceptions during exercise.

Restricted access

Hermann Zbinden-Foncea, Isabel Rada, Jesus Gomez, Marco Kokaly, Trent Stellingwerff, Louise Deldicque and Luis Peñailillo

Purpose: To examine the effects of a moderate dose of caffeine in elite male volleyball players on countermovement-jump (CMJ) performance, as well as temporal concentric- and eccentric-phase effects. Methods: Ten elite male volleyball players took part in 2 experimental days via a randomized crossover trial 1 wk apart in which they ingested either 5 mg/kg of caffeine or a placebo in double-blind fashion. Heart rate and blood pressure were measured at rest and 60 min postingestion. Afterward, subjects also performed 3 CMJ trials 60 min postingestion, of which the average was used for further analysis. They filled out a questionnaire on possible side effects 24 h posttrial. Results: Caffeine intake, compared with placebo, increased CMJ peak concentric force (6.5% ± 6.4%; P = .01), peak power (16.2% ± 8.3%; P < .01), flight time (5.3% ± 3.4%; P < .01), velocity at peak power (10.6% ± 8.0%; P < .01), peak displacement (10.8% ± 6.5%; P < .01), peak velocity (12.6% ± 7.4%; P < .01), peak acceleration (13.5% ± 8.5%; P < .01), and the force developed at peak power (6.0% ± 4.0%; P < .01) and reduced the time between peak power and peak force (16.7% ± 21.6%, P = .04). Caffeine increased diastolic blood pressure by 13.0% ± 8.9% (P < .05), whereas no adverse side effects were found. Conclusions: The ingestion of 5 mg/kg of anhydrous caffeine improves overall CMJ performance without inducing side effects.