Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Luke J. Boyd x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Luke J. Boyd, Kevin Ball, and Robert J. Aughey

Purpose:

To assess the reliability of triaxial accelerometers as a measure of physical activity in team sports.

Methods:

Eight accelerometers (MinimaxX 2.0, Catapult, Australia) were attached to a hydraulic universal testing machine (Instron 8501) and oscillated over two protocols (0.5 g and 3.0 g) to assess within- and between-device reliability. A static assessment was also conducted. Secondly, 10 players were instrumented with two accelerometers during Australian football matches. The vector magnitude was calculated, expressed as Player load and assessed for reliability using typical error (TE) ± 90% confidence intervals (CI), and expressed as a coefficient of variation (CV%). The smallest worthwhile difference (SWD) in Player load was calculated to determine if the device was capable of detecting differences in physical activity.

Results:

Laboratory: Within- (Dynamic: CV 0.91 to 1.05%; Static: CV 1.01%) and between-device (Dynamic: CV 1.02 to 1.04%; Static: CV 1.10%) reliability was acceptable across each test. Field: The between-device reliability of accelerometers during Australian football matches was also acceptable (CV 1.9%). The SWD was 5.88%.

Conclusions:

The reliability of the MinimaxX accelerometer is acceptable both within and between devices under controlled laboratory conditions, and between devices during field testing. MinimaxX accelerometers can be confidently utilized as a reliable tool to measure physical activity in team sports across multiple players and repeated bouts of activity. The noise (CV%) of Player load was lower than the signal (SWD), suggesting that accelerometers can detect changes or differences in physical activity during Australian football.

Restricted access

Luke J. Boyd, Kevin Ball, and Robert J. Aughey

Purpose:

To describe the external load of Australian football matches and training using accelerometers.

Methods:

Nineteen elite and 21 subelite Australian footballers wore accelerometers during matches and training. Accelerometer data were expressed in 2 ways: from all 3 axes (player load; PL) and from all axes when velocity was below 2 m/s (PLSLOW). Differences were determined between 4 playing positions (midfielders, nomadics, deeps, and ruckmen), 2 playing levels (elite and subelite), and matches and training using percentage change and effect size with 90% confidence intervals.

Results:

In the elite group, midfielders recorded higher PL than nomadics and deeps did (8.8%, 0.59 ± 0.24; 34.2%, 1.83 ± 0.39 respectively), and ruckmen were higher than deeps (37.2%, 1.27 ± 0.51). Elite midfielders, nomadics, and ruckmen recorded higher PLSLOW than deeps (13.5%, 0.65 ± 0.37; 11.7%, 0.55 ± 0.36; and 19.5%, 0.83 ± 0.50, respectively). Subelite midfielders were higher than nomadics, deeps, and ruckmen (14.0%, 1.08 ± 0.30; 31.7%, 2.61 ± 0.42; and 19.9%, 0.81 ± 0.55, respectively), and nomadics and ruckmen were higher than deeps for PL (20.6%, 1.45 ± 0.38; and 17.4%, 0.57 ± 0.55, respectively). Elite midfielders, nomadics, and ruckmen recorded higher PL (7.8%, 0.59 ± 0.29; 12.9%, 0.89 ± 0.25; and 18.0%, 0.67 ± 0.59, respectively) and PLSLOW (9.4%, 0.52 ± 0.30; 11.3%, 0.68 ± 0.25; and 14.1%, 0.84 ± 0.61, respectively) than subelite players. Small-sided games recorded the highest PL and PLSLOW and were the only training drill to equal or exceed the load from matches across positions and playing levels.

Conclusion:

PL differed between positions, with midfielders the highest, and between playing levels, with elite higher. Differences between matches and training were also evident, with PL from small-sided games equivalent to or higher than matches.

Restricted access

Denise Jennings, Stuart Cormack, Aaron J. Coutts, Luke J. Boyd, and Robert J. Aughey

Purpose:

To examine the difference in distance measured by two global positioning system (GPS) units of the same model worn by the same player while performing movements common to team sports.

Methods:

Twenty elite Australian football players completed two trials of the straight line movement (10, 20, 40 m) at four speeds (walk, jog, stride, sprint), two trials of the changes of direction (COD) courses of two different frequencies (gradual and tight), and five trials of a team sport running simulation circuit. To assess inter-unit variability for total and high intensity running (HIR) distance measured in matches, data from eight field players were collected in three Australian Hockey League (AHL) matches during the 2009 season. Each subject wore two GPS devices (MinimaxX v2.5, Catapult, Australia) that collected position data at 5 Hz for each movement and match trial. The percentage difference ±90% confidence interval (CI) was used to determine differences between units.

Results:

Differences (±90% CI) between the units ranged from 9.9 ± 4.7% to 11.9 ± 19.5% for straight line running movements and from 9.5 ± 7.2% to 10.7 ± 7.9% in the COD courses. Similar results were exhibited in the team sport circuit (11.1 ± 4.2%). Total distance (10.3 ± 6.2%) and HIR distance (10.3 ± 15.6) measured during the match play displayed similar variability.

Conclusion:

It is recommended that players wear the same GPS unit for each exercise session to reduce measurement error. The level of between-unit measurement error should be considered when comparing results from players wearing different GPS units.

Restricted access

Denise Jennings, Stuart Cormack, Aaron J. Coutts, Luke Boyd, and Robert J. Aughey

Purpose:

To assess the validity and reliability of distance data measured by global positioning system (GPS) units sampling at 1 and 5 Hz during movement patterns common to team sports.

Methods:

Twenty elite Australian Football players each wearing two GPS devices (MinimaxX, Catapult, Australia) completed straight line movements (10, 20, 40 m) at various speeds (walk, jog, stride, sprint), changes of direction (COD) courses of two different frequencies (gradual and tight), and a team sport running simulation circuit. Position and speed data were collected by the GPS devices at 1 and 5 Hz. Distance validity was assessed using the standard error of the estimate (±90% confidence intervals [CI]). Reliability was estimated using typical error (TE) ± 90% CI (expressed as coefficient of variation [CV]).

Results:

Measurement accuracy decreased as speed of locomotion increased in both straight line and the COD courses. Difference between criterion and GPS measured distance ranged from 9.0% to 32.4%. A higher sampling rate improved validity regardless of distance and locomotion in the straight line, COD and simulated running circuit trials. The reliability improved as distance traveled increased but decreased as speed increased. Total distance over the simulated running circuit exhibited the lowest variation (CV 3.6%) while sprinting over 10 m demonstrated the highest (CV 77.2% at 1 Hz).

Conclusion:

Current GPS systems maybe limited for assessment of short, high speed straight line running and efforts involving change of direction. An increased sample rate improves validity and reliability of GPS devices.