Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M. Travis Byrd x
Clear All Modify Search
Restricted access

Taylor K. Dinyer, M. Travis Byrd, Ashley N. Vesotsky, Pasquale J. Succi and Haley C. Bergstrom

Purpose: To determine if the mathematical model used to derive critical power could be used to identify the critical resistance (CR) for the deadlift; compare predicted and actual repetitions to failure at 50%, 60%, 70%, and 80% 1-repetition maximum (1RM); and compare the CR with the estimated sustainable resistance for 30 repetitions (ESR30). Methods: Twelve subjects completed 1RM testing for the deadlift followed by 4 visits to determine the number of repetitions to failure at 50%, 60%, 70%, and 80% 1RM. The CR was calculated as the slope of the line of the total work completed (repetitions × weight [in kilograms] × distance [in meters]) vs the total distance (in meters) the barbell traveled. The actual and predicted repetitions to failure were determined from the CR model and compared using paired-samples t tests and simple linear regression. The ESR30 was determined from the power-curve analysis and compared with the CR using paired-samples t tests and simple linear regression. Results: The weight and repetitions completed at CR were 56 (11) kg and 49 (14) repetitions. The actual repetitions to failure were less than predicted at 50% 1RM (P < .001) and 80% 1RM (P < .001) and greater at 60% 1RM (P = .004), but there was no difference at 70% 1RM (P = .084). The ESR30 (75 [14] kg) was greater (P < .001) than the CR. Conclusions: The total work-vs-distance relationship can be used to identify the CR for the deadlift, which reflected a sustainable resistance that may be useful in the design of resistance-based exercise programs.

Restricted access

M. Travis Byrd, Jonathan Robert Switalla, Joel E. Eastman, Brian J. Wallace, Jody L. Clasey and Haley C. Bergstrom

Critical power (CP) and anaerobic work capacity (AWC) from the CP test represent distinct parameters related to metabolic characteristics of the whole body and active muscle tissue, respectively. Purpose: To examine the contribution of whole-body composition characteristics and local lean mass to further elucidate the differences in metabolic characteristics between CP and AWC as they relate to whole body and local factors. Methods: Fifteen anaerobically trained men were assessed for whole-body (% body fat and mineral-free lean mass [LBM]) and local mineral-free thigh lean mass (TLM) composition characteristics. CP and AWC were determined from the 3-min all-out CP test. Statistical analyses included Pearson product–moment correlations and stepwise multiple-regression analyses (P ≤ .05). Results: Only LBM contributed significantly to the prediction of CP (CP = 2.3 [LBM] + 56.7 [r 2 = .346, standard error of the estimate (SEE) = 31.4 W, P = .021]), and only TLM to AWC (AWC = 0.8 [TLM] + 3.7 [r 2 = .479, SEE = 2.2 kJ, P = .004]). Conclusions: The aerobic component (CP) of the CP test was most closely related to LBM, and the anaerobic component (AWC) was more closely related to the TLM. These findings support the theory that CP and AWC are separate measures of whole-body metabolic capabilities and the energy stores in the activated local muscle groups, respectively. Thus, training programs to improve CP and AWC should be designed to include resistance-training exercises to increase whole-body LBM and local TLM.