Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mandy Clark x
Clear All Modify Search
Restricted access

Darryn S. Willoughby, Tony Boucher, Jeremy Reid, Garson Skelton and Mandy Clark

Background:

Arginine-alpha-ketoglutarate (AAKG) supplements are alleged to increase nitric oxide production, thereby resulting in vasodilation during resistance exercise. This study sought to determine the effects of AAKG supplementation on hemodynamics and brachial-artery blood flow and the circulating levels of L-arginine, nitric oxide metabolites (NOx; nitrate/nitrite), asymmetric dimethyl arginine (ADMA), and L-arginine:ADMA ratio after resistance exercise.

Methods:

Twenty-four physically active men underwent 7 days of AAKG supplementation with 12 g/day of either NO2 Platinum or placebo (PLC). Before and after supplementation, a resistance-exercise session involving the elbow flexors was performed involving 3 sets of 15 repetitions with 70–75% of 1-repetition maximum. Data were collected immediately before, immediately after (PST), and 30 min after (30PST) each exercise session. Data were analyzed with factorial ANOVA (p < .05).

Results:

Heart rate, blood pressure, and blood flow were increased in both groups at PST (p = .001) but not different between groups. Plasma L-arginine was increased in the NO2 group (p = .001). NOx was shown to increase in both groups at PST (p = .001) and at 30PST (p = .001) but was not different between groups. ADMA was not affected between tests (p = .26) or time points (p = .31); however, the L-arginine:ADMA ratio was increased in the NO2 group (p = .03).

Conclusion:

NO2 Platinum increased plasma L-arginine levels; however, the effects observed in hemodynamics, brachial-artery blood flow, and NOx can only be attributed to the resistance exercise.

Restricted access

Mandy Clark, Debra B. Reed, Stephen F. Crouse and Robert B. Armstrong

Little published data describe the dietary and physiological profiles of intercollegiate female soccer players; therefore, the purpose of this investigation was to report baseline dietary data, anthropometrics, and performance indices of soccer women during rigorous pre-season training (2 sessions/day) and then during the post-competitive season. Members of a NCAA Division I women’s soccer squad completed 3-day diet records, anthropometrics, and physical tests, including VO2peak. Average body mass was 62 kg with 16% body fat, and no significant pre to post differences were observed. Total energy, carbohydrate (CHO), protein, and fat intakes were significantly greater during the pre-sea-son. Pre-season energy intake met the DRI for females with an “active” lifestyle (37 kcal/kg). While CHO intake failed to meet minimum recommendations to promote glycogen repletion (7–10 g/kg), protein and fat intakes were above minimum recommendations. Pre- and post-season intakes of several micronu-trients were marginal (<75% of the DRI) including vitamin E, folate, copper, and magnesium. VO2peak significantly improved from pre- to post-season (42 and 50 ml/kg/min). In this study female soccer players appeared to meet caloric needs during periods of training but failed to meet minimum CHO and micronu-trient recommendations. Foods higher in protein and fat displaced more CHOrich and nutrient-dense foods within athletes’ energy requirements and satiety limits.