Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Manuel Mateo-March x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Relationship Between Self-Reported Doping Behavior and Psychosocial Factors in Adult Amateur Cyclists

Mikel Zabala, Jaime Morente-Sánchez, Manuel Mateo-March, and Daniel Sanabria

This study addresses performance-enhancement drug (PED) consumption in amateur sport by investigating the relationship between psychosocial factors and PED use in amateur cyclists. Participants were asked whether they had ever taken PED. They were also asked whether they had any experience in competitive cycling, and the degree to which they participated in the event with a competitive aim. In addition, they completed the Performance Enhancement Attitude Scale, the Rosenberg self-esteem scale, and a bespoke self-efficacy questionnaire, and they rated the percentage of cyclists they believed took PED. Between-groups comparisons and two multiple regression analyses were performed. Overall, the results of our study point to adult amateur cyclists in general, and amateur cyclists with experience in competition in particular, as groups at risk for PED use. This study highlights the value of measuring psychosocial variables as a tool to assess PED use, a current issue at both sport performance and health levels.

Restricted access

Physical Demands and Performance Indicators in Male Professional Cyclists During a Grand Tour: WorldTour Versus ProTeam Category

Xabier Muriel, Pedro L. Valenzuela, Manuel Mateo-March, Jesús G. Pallarés, Alejandro Lucia, and David Barranco-Gil

Purpose: To compare the physical demands and performance indicators of male professional cyclists of 2 different categories (Union Cycliste Internationale WorldTour [WT] and ProTeam [PT]) during a cycling grand tour. Methods : A WT team (n = 8, 31.4 [5.4] y) and a PT team (n = 7, 26.9 [3.3] y) that completed “La Vuelta 2020” volunteered to participate. Participants’ power output (PO) was registered, and measures of physical demand and physiological performance (kilojoules spent, training stress score, time spent at different PO bands/zones, and mean maximal PO [MMP] for different exertion durations) were computed. Results: WT achieved a higher final individual position than PT (31 [interquartile range = 33] vs 71 [59], P = .004). WT cyclists showed higher mean PO and kilojoule values than their PT peers and spent more time at high-intensity PO values (>5.25 W·kg−1) and zones (91%–120% of individualized functional threshold power) (Ps < .05). Although no differences were found for MMP values in the overall analysis (P > .05), subanalyses revealed that the between-groups gap increased through the race, with WT cyclists reaching higher MMP values for ≥5-minute efforts in the second and third weeks (Ps < .05). Conclusions: Despite the multifactorial nature of cycling performance, WT cyclists spend more time at high intensities and show higher kilojoules and mean PO than their PT referents during a grand tour. Although the highest MMP values attained during the whole race might not differentiate between WT and PT cyclists, the former achieve higher MMP values as the race progresses.

Restricted access

The Influence of High-Intensity Work on the Record Power Profile of Under-23, Pro Team, and World Tour Cyclists

Peter Leo, Manuel Mateo-March, Andrea Giorgi, Xabier Muriel, Alejandro Javaloyes, David Barranco-Gil, Jesús G. Pallarés, Alejandro Lucia, Iñigo Mujika, and Pedro L. Valenzuela

Background: Durability (ie, the ability to attenuate the decline in performance after accumulated work) has been identified as a performance determinant in elite cyclists. The aim of the present study was to compare durability in elite cyclists of various performance levels, particularly after high-intensity work, referred to as “high-intensity durability.” Methods: Forty-nine (N = 49) male road cyclists were categorized as either under 23 years of age (U23) (N = 11), Pro Team (N = 13), or World Tour (N = 24). The participants’ critical power (CP) was assessed during the preseason. Thereafter, the participants’ maximum mean power (MMP) values were determined for efforts of different durations (from 5 s to 30 min) after different levels of accumulated work above CP (from 0 to 7.5 kJ·kg−1). Results: U23 cyclists showed a significant reduction of all relative MMP values for durations ≥1 minute after ≥5 kJ·kg−1 above CP compared with the “fresh” state (0 kJ·kg−1), whereas in Pro Team and World Tour cyclists, a significant reduction was not observed until 7.5 kJ·kg−1 above CP. In the “fresh” state, both Pro Team and particularly World Tour cyclists attained higher MMP values for efforts ≥10 minutes than U23 riders. However, more differences emerged with greater previous work levels, and indeed after 7.5 kJ·kg−1 above CP World Tour cyclists attained higher MMP values than both U23 and Pro Team cyclists for most efforts (≥30 s). Conclusion: Pro Team and particularly World Tour cyclists tolerate greater levels of accumulated work at high intensity, which might support the importance of high-intensity durability for performance.

Restricted access

The Day-by-Day Periodization Strategies of a Giro d’Italia Podium Finisher

Gabriele Gallo, Manuel Mateo-March, Andrea Fuk, Emanuela Faelli, Piero Ruggeri, Roberto Codella, and Luca Filipas

Purpose: The aim of this study was to describe the day-by-day training and racing characteristics in preparation for the Giro d’Italia of 1 world-class road cyclist who achieved a place on the podium in the final general classification of the Giro d’Italia. Methods: Day-by-day power meter training and racing data of 1 study subject (road cyclist; age 25 y; relative maximum oxygen consumption 81 mL·min−1·kg−1; relative 20-min record power output 6.6 W·kg−1) covering the 152 days leading up to the podium in the Giro d’Italia final general classification were retrospectively analyzed. Daily load, daily volume, and intensity distribution were considered. Results: During training a pattern alternating “hard days” versus “easy days” was observed, as significant amounts of medium or high intensity, or load, were not performed for more than 2 consecutive days This pattern was achieved combining high volume (>4 h) with a significant amount of medium and high intensity within the same training sessions. During training, when training load and intensity increased, the density of “easy days” augmented. In 1-week stage races and the Giro d’Italia, 3 to 8 consecutive days with significant amounts of medium and high intensity were performed. A high number of training sessions with small amounts of medium- and high-intensity volume was observed: 38 days accumulating 3 to 10 minutes at medium intensity and 29 days spending 1 to 9 minutes at high intensity. Conclusion: These data provide novel insights about the day-by-day periodization strategies leading to a top 3 in the Giro d’Italia general classification.

Restricted access

The Weekly Periodization of Top 5 Tour de France General Classification Finishers: A Multiple Case Study

Gabriele Gallo, Manuel Mateo-March, Daniel Gotti, Ed Maunder, Roberto Codella, Piero Ruggeri, Emanuela Faelli, and Luca Filipas

Purpose: The aim of this study was to describe individual training characteristics, racing strategies, and periodization in preparation for the Tour de France in 2 world-class road cyclists finishing in the top 5 of the general classification. Methods: Week‐by‐week power meter training and racing data of 2 (A and B) road cyclists (age: 29 and 23 y; maximum oxygen consumption: 83 and 81 mL·min−1·kg−1; and relative 20‐min record power output: 6.9 and 6.5 W·kg−1) in the preparation phase (December–July/August) leading up to the Tour de France were retrospectively analyzed. Weekly volume and intensity distribution in power zones were considered. Results: Cyclists A and B completed 46 and 19 races, 22.5 (6.3) and 18.2 (5.1) h·wk−1, with a pyramidal intensity distribution of 81.0%–13.3%–5.7%, and 88.8%–7.9%–3.3% in zone 1–zone 2–zone 3. Cyclist B spent 14 days at altitude. Increased high-intensity volume and polarization index occurred during race weeks. During periods without racing, training intensity progressively increased. Strength training was performed during November and December but not during the following months. During tapering, total exercise volume and time at high intensity decreased. Conclusion: These data provide novel insights into the periodization of world-class road cyclists in advance of a top 5 placing in the Tour de France general classification.

Restricted access

Ambient Temperature and Field-Based Cycling Performance: Insights From Male and Female Professional Cyclists

Pedro L. Valenzuela, Manuel Mateo-March, Mikel Zabala, Xabier Muriel, Alejandro Lucia, David Barranco-Gil, and Jesús G. Pallarés

Purpose: Ambient temperature affects endurance exercise performance. However, most research has been conducted in a laboratory-based setting, and whether there are sex-specific trends remains unclear. The present study aimed to analyze the influence of ambient temperature on cycling performance in male and female professional cyclists using field-based data collected during both training and racing. Methods: A total of 74 cyclists (48 male and 26 female; age 29 [5] y, 8 [5] y of experience in the professional category) were included in the analyses. We registered the participants’ record power profile using data from both training and competitions over 8 years (2013–2020; 8 [5] seasons per cyclist). We analyzed their mean maximal power (MMP) values attained for efforts lasting 5 seconds, 30 seconds, 5 minutes, and 20 minutes at ambient temperatures ranging from <5°C to >35°C. Results: A significant influence of ambient temperature on MMP values was found in male and female cyclists (P < .001 for both), with no significant differences between sexes (P = .512). Cyclists attained the highest MMP values at temperate conditions (10–30°C in males and 5–25°C in females), whereas an impairment in performance was found at colder and hotter temperatures, particularly for the more extreme conditions (performance impairment at <5°C and >35°C of −18% to −9% and −16% to −9%, respectively). Conclusions: Ambient temperature influences field-based cycling performance, following a reverse U-shaped relationship, with the highest MMP values attained in the range of ∼10°C to 25°C and with no major differences between sexes.

Restricted access

Power Road-Derived Physical Performance Parameters in Junior, Under-23, and Professional Road Cycling Climbers

Gabriele Gallo, Manuel Mateo-March, Peter Leo, Antonio Campos-Donaire, Alexis Gandia-Soriano, Andrea Giorgi, Emanuela Faelli, Piero Ruggeri, Roberto Codella, Iñigo Mujika, and Luca Filipas

Purpose: To investigate the relationship of field-derived power and physical performance parameters with competition success in road cycling climbing specialists of age-related categories and to explore cross-sectional differences between high-ranked (HIGHR) climbing specialists of each category. Methods: Fifty-three male climbers participated in this study (junior [JUN], n = 15; under 23 [U23], n = 21; professional [PRO], n = 17). Training and racing data collected during the 2016–19 competitive seasons were retrospectively analyzed for record power outputs (RPOs) and RPOs after prior accumulated work. Results: In JUN, body mass, absolute RPOs, and relative RPOs were higher in HIGHR compared with low ranked (d = 0.97–2.20, large; P = .097–.001); in U23 and PRO, the percentage decrease in RPOs after 20, 30, 40, and 50 kJ·kg−1 was less in HIGHR compared with low ranked (d = 0.77–1.74, moderate–large; P = .096–.004). JUN HIGHR presented lower absolute and relative RPO-20 min ( η p 2 = .34 .38 , large; P = .099–.001) and higher percentage decrease in RPOs after prior accumulated work compared with U23 and PRO HIGHR ( η p 2 = .28 .68 , large; P = .060–.001); percentage decrease in RPOs after prior accumulated work was the only parameter differentiating U23 and PRO HIGHR, with PRO declining less in relative RPO-1 min, RPO-5 min, and RPO-20 min after 20 to 50 kJ·kg−1 ( η p 2 = .28 .68 , large; P = .090–.001). Conclusions: Superior absolute and relative RPOs characterize HIGHR JUN climbing specialists. Superior fatigue resistance differentiates HIGHR U23 and PRO climbers compared with low ranked, as well as PRO versus U23 climbers.

Restricted access

Cross-Sectional Differences in Race Demands Between Junior, Under 23, and Professional Road Cyclists

Gabriele Gallo, Peter Leo, Manuel Mateo-March, Andrea Giorgi, Emanuela Faelli, Piero Ruggeri, Iñigo Mujika, and Luca Filipas

Purpose: To compare the race demands of junior (JUN), under 23 (U23), and professional (PRO) road cyclists. Methods: Thirty male cyclists, divided into 3 age-related categories (JUN, n = 10; U23, n = 10; and PRO, n = 10), participated in this study. Race data collected during the 2019 competitive season were retrospectively analyzed for race characteristics, external, and internal competition load. Results: Higher annual and per race duration, distance, elevation gain, Edward’s training impulse, total work, and work per hour were observed in PRO versus U23 and JUN, and U23 versus JUN (P < .01). PRO and U23 recorded higher mean maximal power (RPOs) between 5 and 180 minutes compared with JUN (P < .01). Edward’s training impulse per hour was higher in JUN than PRO and U23 (P < .01). Accordingly, JUN spent a higher percentage of racing time in high internal intensity zones compared with U23 and PRO, while these 2 categories spent more time at low internal intensity zones (P < .01). Conclusions: JUN races were shorter and included less elevation gain per distance unit compared to U23 and PRO races, but more internally demanding. JUN produced less power output in the moderate-, heavy-, and severe-intensity exercise domains compared with U23 and PRO (RPOs: 5–180 min). U23 and PRO races presented similar work demands per hour and RPOs, but PRO races were longer than U23.

Restricted access

Between-Seasons Variability of Cyclists’ Peak Performance: A Longitudinal Analysis of “Real-World” Power Output Data in Male Professional Cyclists

Pedro L. Valenzuela, Manuel Mateo-March, Xabier Muriel, Mikel Zabala, Alejandro Lucia, David Barranco-Gil, and Jesús G. Pallares

Purpose: The record power profile (RPP) has gained popularity as a method of monitoring endurance cycling performance. However, the expected variation of cyclists’ performance between seasons remains unknown. We aimed to assess the between-seasons variability of peak performance (assessed through the RPP) in male professional cyclists. Methods: The study followed a longitudinal observational design. Sixty-one male professional cyclists (age 26 [5] y) with power output data from both training sessions and competitions were analyzed for a median of 4 consecutive seasons (range 2–12). The highest mean maximum power values attained for different durations (from 10 s to 30 min), as well as the resulting critical power, were determined for each season. Within-cyclist variability between seasons was assessed, and the upper threshold of expected changes (ie, twice the normal coefficient of variation) was determined. Results: All mean maximum power values showed an overall high agreement and low variability between seasons (intraclass correlation coefficient [ICC] = .76–.88 and coefficient of variation [CV] = 3.2%–5.9%), with the lowest variability observed for long efforts (>1 min). Critical power showed an ICC and CV of .79 (95% CI, .70–.85) and 3.3% (95% CI, 3.0%–3.7%), respectively. Upper thresholds of expected variation were <12% for short efforts (≤1 min) and <8% for long efforts. Conclusions: “Real-world” peak performance assessed through the RPP shows a low variability between seasons in male professional cyclists—especially for long efforts—with expected variation being around 6% and 3% for short (≤1 min) and long efforts, respectively, and with changes >12% and >8%, respectively, being infrequent for these effort durations.

Restricted access

The Record Power Profile of Male Professional Cyclists: Fatigue Matters

Manuel Mateo-March, Pedro L. Valenzuela, Xabier Muriel, Alexis Gandia-Soriano, Mikel Zabala, Alejandro Lucia, Jesús G. Pallares, and David Barranco-Gil

Purpose: The present study aimed to determine the influence of fatigue on the record power profile of professional male cyclists. We also assessed whether fatigue could differently affect cyclists of 2 competition categories. Methods: We analyzed the record power profile in 112 professional cyclists (n = 46 and n = 66 in the ProTeam [PT] and WorldTour [WT] category, respectively; age 29 [6] y, 8 [5] y experience in the professional category) during 2013–2021 (8 [5] seasons/cyclist). We analyzed their mean maximal power (MMP) values for efforts lasting 10 seconds to 120 minutes with no fatigue (after 0 kJ·kg−1) and with increasing levels of fatigue (after 15, 25, 35, and 45 kJ·kg−1). Results: A significant (P < .001) and progressive deterioration of all MMP values was observed from the lowest levels of fatigue assessed (ie, −1.6% to −3.0% decline after 15 kJ·kg−1, and −6.0% to −9.7% after 45 kJ·kg−1). Compared with WT, PT cyclists showed a greater decay of MMP values under fatigue conditions (P < .001), and these differences increased with accumulating levels of fatigue (decay of −1.8 to −2.9% [WT] with reference to 0 kJ·kg−1 vs −1.1% to −4.4% [PT] after 15 kJ·kg−1 and of −4.7% to −8.8% [WT] vs −7.6% to −11.6% [PT] after 45 kJ·kg−1). No consistent differences were found between WT and PT cyclists in MMP values assessed in nonfatigue conditions (after 0 kJ·kg−1), but WT cyclists attained significantly higher MMP values with accumulating levels of fatigue, particularly for long-duration efforts (≥5 min). Conclusions: Our findings highlight the importance of considering fatigue when assessing the record power profile of endurance athletes and support the ability to attenuate fatigue-induced decline in MMP values as a determinant of endurance performance.