Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Marc Sim x
Clear All Modify Search
Restricted access

Marc Sim, Brian Dawson, Grant Landers, Debbie Trinder and Peter Peeling

The trace element iron plays a number of crucial physiological roles within the body. Despite its importance, iron deficiency remains a common problem among athletes. As an individual’s iron stores become depleted, it can affect their well-being and athletic capacity. Recently, altered iron metabolism in athletes has been attributed to postexercise increases in the iron regulatory hormone hepcidin, which has been reported to be upregulated by exercise-induced increases in the inflammatory cytokine interleukin-6. As such, when hepcidin levels are elevated, iron absorption and recycling may be compromised. To date, however, most studies have explored the acute postexercise hepcidin response, with limited research seeking to minimize/attenuate these increases. This review summarizes the current knowledge regarding the postexercise hepcidin response under a variety of exercise scenarios and highlights potential areas for future research—such as: a) the use of hormones though the female oral contraceptive pill to manipulate the postexercise hepcidin response, b) comparing the use of different exercise modes (e.g., cycling vs. running) on hepcidin regulation.

Restricted access

Angela L. Spence, Marc Sim, Grant Landers and Peter Peeling

Both caffeine (CAF) and pseudoephedrine (PSE) are proposed to be central nervous system stimulants. However, during competition, CAF is a permitted substance, whereas PSE is a banned substance at urinary levels >150 μg·ml−1. As a result, this study aimed to compare the effect of CAF versus PSE use on cycling time trial (TT) performance to explore whether the legal stimulant was any less ergogenic than the banned substance. Here, 10 well-trained male cyclists or triathletes were recruited for participation. All athletes were required to attend the laboratory on four separate occasions—including a familiarization trial and three experimental trials, which required participants to complete a simulated 40 km (1,200 kJ) cycling TT after the ingestion of either 200 mg CAF, 180 mg PSE or a nonnutritive placebo (PLA). The results showed that the total time taken and the mean power produced during each TT was not significantly different (p > .05) between trials, despite a 1.3% faster overall time (~57 s) after CAF consumption. Interestingly, the time taken to complete the second half of the TT was significantly faster (p < .05) in CAF as compared with PSE (by 99 s), with magnitude based inferences suggesting a 91% beneficial effect of CAF during the second half of the TT. This investigation further confirms the ergogenic benefits of CAF use during TT performances and further suggests this legal CNS stimulant has a better influence than a supra-therapeutic dose of PSE.

Restricted access

Callum J. McCaskie, Warren B. Young, Brendan B. Fahrner and Marc Sim

Purpose: To examine the association between preseason training variables and subsequent in-season performance in an elite Australian football team. Methods: Data from 41 elite male Australian footballers (mean [SD] age = 23.4 [3.1] y, height =188.4 [7.1] cm, and mass = 86.7 [7.9] kg) were collected from 1 Australian Football League (AFL) club. Preseason training data (external load, internal load, fitness testing, and session participation) were collected across the 17-wk preseason phase (6 and 11 wk post-Christmas). Champion Data© Player Rank (CDPR), coaches’ ratings, and round 1 selection were used as in-season performance measures. CDPR and coaches’ ratings were examined over the entire season, first half of the season, and the first 4 games. Both Pearson and partial (controlling for AFL age) correlations were calculated to assess if any associations existed between preseason training variables and in-season performance measures. A median split was also employed to differentiate between higher- and lower-performing players for each performance measure. Results: Preseason training activities appeared to have almost no association with performance measured across the entire season and the first half of the season. However, many preseason training variables were significantly linked with performance measured across the first 4 games. Preseason training variables that were measured post-Christmas were the most strongly associated with in-season performance measures. Specifically, total on-field session rating of perceived exertion post-Christmas, a measurement of internal load, displayed the greatest association with performance. Conclusion: Late preseason training (especially on-field match-specific training) is associated with better performance in the early season.

Open access

Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim and Louise M. Burke

A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.

Restricted access

Marc Sim, Brian Dawson, Grant Landers, Dorine W. Swinkels, Harold Tjalsma, Debbie Trinder and Peter Peeling

The effect of exercise modality and intensity on Interleukin-6 (IL-6), iron status, and hepcidin levels was investigated. Ten trained male triathletes performed 4 exercise trials including low-intensity continuous running (L-R), low-intensity continuous cycling (L-C), high-intensity interval running (H-R), and high-intensity interval cycling (H-C). Both L-R and L-C consisted of 40 min continuous exercise performed at 65% of peak running velocity (vVO2peak) and cycling power output (pVO2peak), while H-R and H-C consisted of 8 × 3-min intervals performed at 85% vVO2peak and pVO2peak. Venous blood samples were drawn pre-, post-, and 3 hr postexercise. Significant increases in postexercise IL-6 were seen within each trial (p < .05) and were significantly greater in H-R than L-R (p < .05). Hepcidin levels were significantly elevated at 3 hr postexercise within each trial (p < .05). Serum iron levels were significantly elevated (p < .05) immediately postexercise in all trials except L-C. These results suggest that, regardless of exercise mode or intensity, postexercise increases in IL-6 may be expected, likely influencing a subsequent elevation in hepcidin. Regardless, the lack of change in postexercise serum iron levels in L-C may indicate that reduced hemolysis occurs during weight-supported, low-intensity activity.