Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mark Schafer x
Clear All Modify Search
Restricted access

Gina Sobrero, Scott Arnett, Mark Schafer, Whitley Stone, T. A. Tolbert, Amanda Salyer-Funk, Jason Crandall, Lauren B. Farley, Josh Brown, Scott Lyons, Travis Esslinger, Keri Esslinger and Jill Maples

High intensity functional training (HIFT) emphasizes constantly varied, high intensity, functional activity by programming strength and conditioning exercises, gymnastics, Olympic weightlifting, and specialty movements. Conversely, traditional circuit training (TCT) programs aim to improve muscular fitness by utilizing the progressive overload principle, similar movements weekly, and specified work-to-rest ratios. The purpose of this investigation was to determine if differences exist in health and performance measures in women participating in HIFT or TCT after a six-week training program. Recreationally active women were randomly assigned to a HIFT (n = 8, age 26.0 + 7.3 yrs) or TCT (n = 11, age 26.3 + 9.6 yrs) group. Participants trained three days a week for six weeks with certified trainers. Investigators examined body composition (BC), aerobic and anaerobic capacity, muscular strength, endurance, flexibility, power, and agility. Repeated-measures ANOVA were used for statistical analyses with an alpha level of 0.05. Both groups increased body mass (p = .011), and improved muscular endurance (p < .000), upper body strength (p = .007), lower body power (p = .029) and agility (p = .003). In addition, the HIFT group decreased body fat (BF) %, while the TCT group increased BF% (p = .011). No changes were observed in aerobic or anaerobic capacity, flexibility, upper body power, or lower body stair climbing power. Newer, high intensity functional exercise programs such as HIFT may have better results on BC and similar effects when compared with TCT programs on health and fitness variables such as musculoskeletal strength and performance.

Restricted access

Jonathon R. Staples, Kevin A. Schafer, Matthew V. Smith, John Motley, Mark Halstead, Andrew Blackman, Amanda Haas, Karen Steger-May, Matthew J. Matava, Rick W. Wright and Robert H. Brophy

Context: Patients with anterior cruciate ligament (ACL) tears are likely to have deficient dynamic postural stability compared with healthy sex- and age-matched controls. Objectives: To test the hypothesis that patients undergoing ACL reconstruction have decreased dynamic postural stability compared with matched healthy controls. Design: Prospective case-control study. Setting: Orthopedic sports medicine and physical therapy clinics. Patients or Other Participants: Patients aged 20 years and younger with an ACL tear scheduled for reconstruction were enrolled prospectively. Controls were recruited from local high schools and colleges via flyers. Interventions: Patients underwent double-stance dynamic postural stability testing prior to surgery, recording time to failure and dynamic motion analysis (DMA) scores. Patients were then matched with healthy controls. Main Outcome Measures: Demographics, time to failure, and DMA scores were compared between groups. Results: A total of 19 females and 12 males with ACL tears were matched with controls. Individuals with ACL tears were more active (Marx activity score: 15.7 [1.0] vs 10.8 [4.9], P < .001); had shorter times until test failure (84.4 [15.8] vs 99.5 [14.5] s, P < .001); and had higher (worse) DMA scores (627 [147] vs 481 [132], P < .001), indicating less dynamic postural stability. Six patients with ACL deficiency (1 male and 5 females) demonstrated lower (better) DMA scores than their controls, and another 7 (4 males and 3 females) were within 20% of controls. Conclusions: Patients undergoing ACL reconstruction had worse global dynamic postural stability compared with well-matched controls. This may represent the effect of the ACL injury or preexisting deficits that contributed to the injury itself. These differences should be studied further to evaluate their relevance to ACL injury risk, rehabilitation, and return to play.