Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Mark Waldron x
Clear All Modify Search
Restricted access

Mark Waldron and Aron Murphy

This study aimed to identify characteristics of match performance and physical ability that discriminate between elite and subelite under-14 soccer players. Players were assessed for closed performance and movement, physiological responses, and technical actions during matches. Elite players covered more total m·min−1 (115.7 ± 6.6 cf. 105.4 ± 7.7 m·min−1) and high-intensity m·min−1 (elite = 14.5 ± 2.3 cf. 11.5 ± 3.7 m·min−1) compared with subelite players. Elite players also attempted more successful (0.41 ± 0.11 cf. 0.18 ± 0.02) and unsuccessful ball retentions·min−1 (0.14 ± 0.04 cf. 0.06 ± 0.02) compared with subelite players. Elite players were faster over 10 m (1.9 ± 0.1 cf. 2.3 ± 0.2 s) and faster dribblers (16.4 ± 1.4 cf. 18.2 ± 1.1 s) compared with subelite players. Speed (10 m) and successful ball retention·min−1 contributed to a predictive model, explaining 96.8% of the between-group variance. The analysis of match performance provides a more thorough understanding of the factors underlying talent among youth soccer players.

Restricted access

Mark Waldron, Jamie Highton and Craig Twist

Purpose:

This study assessed the reliability of a rugby league movement-simulation protocol, relative to interchanged players (RLMSP-i).

Methods:

Fifteen male participants completed 2 trials of the RLMSP-i, separated by 1 wk. The RLMSP-i comprised low- to moderate-intensity running, interspersed by high-intensity sprinting and tackling activity, based on global positioning system (GPS) data recorded during Super League performances.

Results:

The lowest coefficient of variation (CV ± 95% CI) was observed for total m/min during both interchange bout 1 (1.1% ± 0.2%) and bout 2 (1.0% ± 0.2%). The percentage of heart rate peak and ratings of perceived exertion demonstrated CVs of 1.2–2.0% and 2.9–3.5%, respectively. The poorest agreement between trials was found for blood lactate concentration (16.2% ± 2.8%). In no case was the CV smaller than the smallest worthwhile change, yet in every case the moderate changes were larger than the CV.

Conclusions:

The RLMSP-i’s reliability is sufficient to enable the detection of moderate changes in various performance and physiological measurements that accurately simulate some, but not all, aspects of rugby league matches.

Restricted access

Nicola Furlan, Mark Waldron, Mark Osborne and Adrian J. Gray

Purpose:

To assess the ecological validity of the Rugby Sevens Simulation Protocol (R7SP) and to evaluate its interday reliability.

Methods:

Ten male participants (20 ± 2 y, 74 ± 11 kg) completed 2 trials of the R7SP, separated by 7 d. The R7SP comprised typical running and collision activities, based on data recorded during international rugby sevens match play. Heart rate (HR) was monitored continuously during the R7SP, and the participants’ movements were recorded through a 20-Hz global positioning system unit. Blood lactate and rating of perceived exertion were collected before and immediately after the 1st and 2nd halves of the R7SP.

Results:

The average activity profile was 117 ± 5 m/min, of which 27 ± 2 m/min was covered at high speed, with a calculated energetic demand of 1037 ± 581 J/kg, of which ~40% was expended at a rate above 19 W/kg. Mean HR was 88% ± 4% of maximal HR. Participants spent ~45% ± 27% of time above 90% of maximal HR (t >90%HRmax). There were no significant differences between trials, except for lactate between the halves of the R7SP. The majority of the measured variables demonstrated a between-trials coefficient of variation (CV%) lower than 5%. Blood lactate measurements (14–20% CV) and t >90%HRmax (26% CV) were less reliable variables. In most cases, the calculated moderate worthwhile change was higher than the CV%.

Conclusions:

The R7SP replicates the activity profile and HR responses of rugby sevens match play. It is a reliable simulation protocol that can be used in a research environment to detect systematic worthwhile changes in selected performance variables.

Restricted access

Mark Waldron, Jamie Highton, Matthew Daniels and Craig Twist

Purpose:

This study aimed to quantify changes in heart rate (HR) and movement speeds in interchanged and whole-match players during 35 elite rugby league performances.

Methods:

Performances were separated into whole match, interchange bout 1, and interchange bout 2 and further subdivided into match quartiles. Mean percentages of peak HR (%HRpeak) and total and high-intensity running (> 14 km/h) meters per minute (m/min) were recorded.

Results:

For whole-match players, a decline in high-intensity m/min and %HRpeak was observed between successive quartiles (P < .05). High-intensity m/min during interchange 1 also progressively declined, although initial m/min was higher than whole match (24.2 ± 7.9 m/min vs 18.3 ± 4.7 m/min, P = .018), and %HRpeak did not change over match quartiles (P > .05). During interchange 2, there was a decline in high-intensity m/min from quartile 1 to quartile 3 (18 ± 4.1 vs 13.4 ± 5 m/min, P = .048) before increasing in quartile 4. Quartiles 1 and 2 also showed an increase in %HRpeak (85.2 ± 6.5 vs 87.3 ± 4.2%, P = .022).

Conclusions:

Replacement players adopted a high initial intensity in their first match quartile before a severe decline thereafter. However, in a second bout, lower exercise intensity at the outset enabled a higher physiological exertion for later periods. These findings inform interchange strategy and conditioning for coaches while also providing preliminary evidence of pacing in team sport.

Restricted access

Owen Jeffries, Mark Waldron, Stephen D. Patterson and Brook Galna

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists (V˙O2max 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.

Restricted access

Paul Head, Mark Waldron, Nicola Theis and Stephen David Patterson

Context: Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) has been shown to improve muscular strength and size better than NMES alone. However, previous studies used varied methodologies not recommended by previous NMES or BFR research. Objective: The present study investigated the acute effects of NMES combined with varying degrees of BFR using research-recommended procedures to enhance understanding and the clinical applicability of this combination. Design: Randomized crossover. Setting: Physiology laboratory. Participants: A total of 20 healthy adults (age 27 [4] y; height 177 [8] cm; body mass 77 [13] kg). Interventions: Six sessions separated by at least 7 days. The first 2 visits served as familiarization, with the experimental conditions performed in the final 4 sessions: NMES alone, NMES 40% BFR, NMES 60% BFR, and NMES 80% BFR. Main Outcome Measures: Maximal voluntary isometric contraction, muscle thickness, blood pressure, heart rate, rating of perceived exertion, and pain were all recorded before and after each condition. Results: The NMES 80% BFR caused greater maximal voluntary isometric contraction decline than any other condition (−38.9 [22.3] N·m, P < .01). Vastus medialis and vastus lateralis muscle thickness acutely increased after all experimental conditions (P < .05). Pain and ratings of perceived exertion were higher after NMES 80% BFR compared with all other experimental conditions (P < .05). No cardiovascular effects were observed between conditions. Conclusion: The NMES combined with 80% BFR caused greater acute force decrement than the other conditions. However, greater perceptual ratings of pain and ratings of perceived exertion were observed with NMES 80% BFR. These acute observations must be investigated during chronic interventions to corroborate any relationship to changes in muscle strength and size in clinical populations.

Restricted access

Rory Warnock, Owen Jeffries, Stephen Patterson and Mark Waldron

Purpose: To investigate the effects of caffeine (C), taurine (T), caffeine and taurine coingestion (C +T), or placebo (P) on repeated Wingate cycling performance and associated physiological responses. Methods: Seven male team-sport players participated in a randomized, single-blind, crossover study, where they completed 3 Wingate tests, each separated by 2 min, an hour after ingesting: C (5 mg/kg body mass [BM]), T (50 mg/kg BM), C +T (5 mg/kg BM + 50 mg/kg BM), or P (5 mg/kg BM) in a gelatin capsule. Performance was measured on an ergometer, and blood lactate, perceived exertion, heart rate (HR), mean arterial pressure (MAP), and rate pressure product (RPP) were measured at rest (presupplement), baseline (1 h postsupplement), and during and after exercise. Results: Magnitude-based inferences revealed that all of the supplements increased (small to moderate, likely to very likely) mean peak power (MPP), peak power (PP), and mean power (MP) compared to P, with greater MPP, PP, and MP in T compared to C (small, possible). Intrasprint fatigue index (%FIIntra) was greater in T compared to P and C (moderate, likely), and %FIInter was lower in T compared to C (small, possible). C and C +T increased HR, MAP, and RPP compared to P and T at baseline (moderate to very large, likely to most likely); however, these only remained higher in C compared to all conditions in the final sprint. Conclusions: T elicited greater improvements in performance compared to P, C, or C +T while reducing the typical chronotropic and pressor effects of C.

Restricted access

Craig Twist, Jamie Highton, Mark Waldron, Emma Edwards, Damien Austin and Tim J. Gabbett

Purpose:

This study compared the movement demands of players competing in matches from the elite Australian and European rugby league competitions.

Methods:

Global positioning system devices were used to measure 192 performances of forwards, adjustables, and outside backs during National Rugby League (NRL; n = 88) and European Super League (SL; n = 104) matches. Total and relative distances covered overall and at low (0–3.5 m/s), moderate (3.6–5 m/s), and high (>5 m/s) speeds were measured alongside changes in movement variables across the early, middle, and late phases of the season.

Results:

The relative distance covered in SL matches (95.8 ± 18.6 m/min) was significantly greater (P < .05) than in NRL matches (90.2 ± 8.3 m/min). Relative low-speed activity (70.3 ± 4.9 m/min vs 75.5 ± 18.9 m/min) and moderate-speed running (12.5 ± 3.3 m m/min vs 14.2 ± 3.8 m/min) were highest (P < .05) in the SL matches, and relative high-speed distance was greater (P < .05) during NRL matches (7.8 ± 2.1 m/min vs 6.1 ± 1.7 m/min).

Conclusions:

NRL players have better maintenance of high-speed running between the first and second halves of matches and perform less low- and moderate-speed activity, indicating that the NRL provides a higher standard of rugby league competition than the SL.

Restricted access

Kieran Cooke, Tom Outram, Raph Brandon, Mark Waldron, Will Vickery, James Keenan and Jamie Tallent

Purpose: First, to assess changes in neuromuscular function via alterations in countermovement-jump strategy after training and 2 forms of competition and second, to compare the relationship between workloads and fatigue in seam bowlers and nonseam bowlers. Methods: Twenty-two professional cricketers’ neuromuscular function was assessed at baseline, immediately post and +24 h posttraining, and after multiday and 1-day cricket events. In addition, perceptual (rating of perceived exertion [RPE] and soreness) measures and external loads (PlayerLoad™, number of sprints, total distance, and overs) were monitored across all formats. Results: Seam bowlers covered more distance, completed more sprints, and had a higher RPE in training (P < .05), without any difference in soreness compared with nonseam bowlers. Compared with seam bowlers, the nonseam bowlers’ peak force decreased post-24 h compared with baseline only in 1-d cricket (95% CI, 2.1–110.0 N; P < .04). There were no pre–post training or match differences in jump height or alterations in jump strategy (P > .05). Seam bowlers increased their peak jumping force from baseline to immediately posttraining or game (95% CI, 28.8–132.4 N; P < .01) but decreased between postcricket to +24 h (95% CI, 48.89–148.0 N; P < .001). Conclusion: Seam bowlers were more accustomed to high workloads than nonseamers and thus more fatigue resistant. Changes in jump height or strategy do not appear to be effective methods of assessing fatigue in professional crickets. More common metrics such as peak force are more sensitive.

Restricted access

Nicola Furlan, Mark Waldron, Kathleen Shorter, Tim J. Gabbett, John Mitchell, Edward Fitzgerald, Mark A. Osborne and Adrian J. Gray

Purpose:

To investigate temporal variation in running intensity across and within halves and evaluate the agreement between match-analysis indices used to identify fluctuations in running intensity in rugby sevens.

Methods:

Data from a 15-Hz global positioning system (GPS) were collected from 12 elite rugby sevens players during the IRB World Sevens Series (N = 21 full games). Kinematic (eg, relative distance [RD]) and energetic (eg, metabolic power [MP]) match-analysis indices were determined from velocity–time curves and used to investigate between-halves variations. Mean MP and RD were used to identify peak 2-minute periods of play. Adjacent 2-minute periods (prepeak and postpeak) were compared with peak periods to identify changes in intensity. MP and RD were expressed relative to maximal oxygen uptake (V̇O2max) and speed at V̇O2max, respectively, and compared in their ability to describe the intensity of peak periods and their temporal occurrence.

Results:

Small to moderate reductions were present for kinematic (RD; 8.9%) and energetic (MP; 6%) indices between halves. Peak periods (RD = 130 m/min, MP =13 W/kg) were higher (P < .001) than the match average (RD = 94 m/min, MP = 9.5 W/kg) and the prepeak and postpeak periods (P < .001). RD underestimated the intensity of peak periods compared with MP (bias 16%, limits of agreement [LoA] ± 6%). Peak periods identified by RD and MP were temporally dissociated (bias 21 s, LoA ± 212 s).

Conclusions:

The findings suggest that running intensity varies between and within halves; however, the index used will influence both the magnitude and the temporal identification of peak periods.