Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Martin Tan x
Clear All Modify Search
Restricted access

Brian J. Martin, Rachel B. Tan, Jenna B. Gillen, Michael E. Percival and Martin J. Gibala

Supplementation with green tea extract (GTE) in animals has been reported to induce numerous metabolic adaptations including increased fat oxidation during exercise and improved performance. However, data regarding the metabolic and physiological effects of GTE during exercise in humans are limited and equivocal.

Purpose:

To examine the effects of short-term GTE treatment on resting energy expenditure (REE), wholebody substrate utilization during exercise and time trial performance.

Methods:

Fifteen active men (24 ± 3 y; VO2peak = 48 ± 7 ml·kg·min−1; BMI = 26 ± 3 kg·m2(–1)) ingested GTE (3x per day = 1,000 mg/d) or placebo (PLA) for 2 day in a double-blind, crossover design (each separated by a 1 week wash-out period). REE was assessed in the fasted state. Subjects then ingested a standardized breakfast (~5.0 kcal·kg-1) and 90 min later performed a 60 min cycling bout at an intensity corresponding to individual maximal fat oxidation (44 ± 11% VO2peak), followed by a 250 kJ TT.

Results:

REE, whole-body oxygen consumption (VO2) and substrate oxidation rates during steady-state exercise were not different between treatments. However, mean heart rate (HR) was lower in GTE vs. PLA (115 ± 16 vs. 118 ± 17 beats·min−1; main effect, p = .049). Mixed venous blood [glycerol] was higher during rest and exercise after GTE vs. PLA (p = .006, main effect for treatment) but glucose, insulin and free-fatty acids were not different. Subsequent time trial performance was not different between treatments (GTE = 25:38 ± 5:32 vs. PLA = 26:08 ± 8:13 min; p = .75).

Conclusion:

GTE had minimal effects on whole-body substrate metabolism but significantly increased plasma glycerol and lowered heart rate during steady-state exercise, suggesting a potential increase in lipolysis and a cardiovascular effect that warrants further investigation.

Restricted access

Martin Tan, Rachel Chan Moy Fat, Yati N. Boutcher and Stephen H. Boutcher

High-intensity intermittent exercise (HIIE) such as the 30-s Wingate test attenuates postprandial triacylglycerol (TG), however, the ability of shorter versions of HIIE to reduce postprandial TG is undetermined. Thus, the effect of 8-s sprinting bouts of HIIE on blood TG levels of 12 females after consumption of a high-fat meal (HFM) was examined. Twelve young, sedentary women (BMI 25.1 ± 2.3 kg/m2; age 21.3 ± 2.1 years) completed a maximal oxygen uptake test and then on different days underwent either an exercise or a no-exercise postprandial TG condition. Both conditions involved consuming a HFM after a 12-hr fast. The HFM, in milkshake form provided 4170 kJ (993 Kcal) of energy and 98 g fat. Order was counter-balanced. In the exercise condition participants completed 20-min of HIIE cycling consisting of repeated bouts of 8 s sprint cycling (100–115 rpm) and 12 s of active rest (easy pedaling) 14 hr before consuming the HFM. Blood samples were collected hourly after the HFM for 4 hr. Total postprandial TG was 13% lower, p = .004, in the exercise (5.84 ± 1.08 mmol L−1 4 h−1) compared with the no-exercise condition (6.71 ± 1.63 mmol L−1 4 h−1). In conclusion, HIIE significantly attenuated postprandial TG in sedentary young women.