Search Results

You are looking at 1 - 7 of 7 items for :

  • Author: Martyn J. Binnie x
  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Cruz Hogan, Martyn J. Binnie, Matthew Doyle, Leanne Lester, and Peter Peeling

Purpose: To compare methods of monitoring and prescribing on-water exercise intensity (heart rate [HR], stroke rate [SR], and power output [PO]) during sprint kayak training. Methods: Twelve well-trained flat-water sprint kayak athletes completed a preliminary on-water 7 × 4-min graded exercise test and a 1000-m time trial to delineate individual training zones for PO, HR, and SR into a 5-zone model (T1–T5). Subsequently, athletes completed 2 repeated trials of an on-water training session, where intensity was prescribed based on individual PO zones. Times quantified for T1–T5 during the training session were then compared between PO, HR, and SR. Results: Total time spent in T1 was higher for HR (P < .01) compared with PO. Time spent in T2 was lower for HR (P < .001) and SR (P < .001) compared with PO. Time spent in T3 was not different between PO, SR, and HR (P > .05). Time spent in T4 was higher for HR (P < .001) and SR (P < .001) compared with PO. Time spent in T5 was higher for SR (P = .03) compared with PO. Differences were found between the prescribed and actual time spent in T1–T5 when using PO (P < .001). Conclusions: The measures of HR and SR misrepresented time quantified for T1–T5 as prescribed by PO. The stochastic nature of PO during on-water training may explain the discrepancies between prescribed and actual time quantified for power across these zones. For optimized prescription and monitoring of athlete training loads, coaches should consider the discrepancies between different measures of intensity and how they may influence intensity distribution.

Restricted access

Chelsie E. Winchcombe, Martyn J. Binnie, Matthew M. Doyle, Cruz Hogan, and Peter Peeling

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.

Open access

Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim, and Louise M. Burke

A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.

Restricted access

Martin C. Waller, Deborah A. Kerr, Martyn J. Binnie, Emily Eaton, Clare Wood, Terreen Stenvers, Daniel F. Gucciardi, Carmel Goodman, and Kagan J. Ducker

The authors aimed to update knowledge of the use of supplements among Australian athletes at a state-based sports institute. The authors conducted a cross-sectional survey using an online questionnaire to assess the influence of age, sports category, and scholarship category on supplement use. Of 94 completed questionnaires, 82 (87%) indicated supplements in the previous 12 months (mean = 4.9 ± 3.3). No significant difference in supplement usage rate was identified when considering age, scholarship category, or sport category. The most frequently used supplements were sports drinks (70%), caffeine (48%), protein powder (42%), and sports bars (42%). Recovery (63%), health maintenance (59%), and improved energy (50%) were the most frequently reported rationale to use supplements. Allied health professionals and credible online resources were the predominant sources of influence regarding use. However, athletes from lower scholarship categories were more likely to have social media, parents, and siblings influence usage, and age was inversely related to increased influence from parents, social media, physicians not associated with the institute, the Internet, and siblings. Older athletes and those on higher scholarships were more likely to source supplements from training facilities and sports nutrition staff outside of the institute or direct from a supplier, whereas those on lower scholarships tended to rely more on family and friends for their supplements. Findings from this study show a high prevalence of supplement use and are the first to show an influence of social media, particularly in younger athletes. Opportunities exist to optimize how athletes are informed regarding supplement use and organizational and supplement policy.

Open access

Daniel J. Astridge, Peter Peeling, Paul S.R. Goods, Olivier Girard, Jamie Hewlett, Anthony J. Rice, and Martyn J. Binnie

Background: World Rowing’s decision to support the proposed change from a 2000-m to a 1500-m regatta course at the 2028 Olympic Games in Los Angeles is anticipated to have important implications for athlete preparation and race execution during the 2024–2028 quadrennium. Purpose: This commentary aims to provide insight into the expected implications of the reduction in course length heading into the 2028 Games, focusing on the training and monitoring of high-performance rowers, as well as tactical, technical, and pacing considerations for performance. The reduction in event duration (estimated to be ∼90–120 s across all event classes) will lead to an expected ∼5% to 15% increase in relative contribution of anaerobic metabolism. Consequently, adjustment in training periodization priorities toward higher-intensity interventions may be required, especially in the period immediately prior to the games. The critical-power and anaerobic-power-reserve concepts may become more useful tools for structuring exercise programs, evaluating training outcomes, and determining event suitability through individual physiological profiling. Additionally, the adoption of a more constant (flat) pacing strategy, rather than the commonly used reverse J-shaped approach, might be considered for racing over this new distance. Finally, technical aspects, such as stroke rate and gearing, may require adjustment for optimal performance; however, research is clearly required to explore such effects. Conclusions: Our intention is to stimulate discussion and debate, with the provision of practical recommendations that aim to optimize rowers’ preparation for and performance at the 2028 Olympic Games.

Restricted access

Alannah K.A. McKay, Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim, Rebecca Cross, and Jason Siegler

Purpose: To assess the efficacy of a topical sodium bicarbonate (0.3 g/kg body weight NaHCO3) application (PR lotion; Amp Human) on blood buffering capacity and performance in recreationally active participants (study A) and moderately trained athletes (study B). Methods: In Study A, 10 participants completed 2 experimental trials: oral NaHCO3 (0.3 g/kg body weight + placebo lotion) or PR lotion (0.9036 g/kg body weight + oral placebo) applied 90 minutes prior to a cycling task to exhaustion (30-s sprints at 120% peak power output with 30-s rest). Capillary blood was collected and analyzed for pH, bicarbonate, and lactate every 10 minutes throughout the 90-minute loading period and postexercise at 5, 10, and 15 minutes. In Study B, 10 cyclists/triathletes completed 2 experimental trials, applying either PR or placebo lotion 30 minutes prior to a cycling performance task (3 × 30-s maximal sprints with 90-s recovery). Capillary blood samples were collected at baseline, preexercise, and postexercise and analyzed as per study A. Results: In Study A, pH and bicarbonate were significantly elevated from baseline after 10 minutes in the oral NaHCO3 condition and throughout recovery compared with no elevation in the PR lotion condition (P < .001). No differences in cycling time occurred between PR lotion (349 [119] s) and oral NaHCO3 (363 [80] s; P = .697). In Study B, no differences in blood parameters, mean power (P = .108), or peak power (P = .448) were observed between conditions. Conclusions: PR lotion was ineffective in altering blood buffering capacity or enhancing performance in either trained or untrained individuals.

Restricted access

Myles C. Dennis, Paul S.R. Goods, Martyn J. Binnie, Olivier Girard, Karen E. Wallman, Brian T. Dawson, and Peter Peeling

Purpose: This study aimed to assess the influence of graded air temperatures during repeated-sprint training in hypoxia (RSH) on performance and physiological responses. Methods: Ten well-trained athletes completed one familiarization and 4 experimental sessions at a simulated altitude of 3000 m (0.144 FIO2) above sea level. Air temperatures utilized across the 4 experimental sessions were 20°C, 25°C, 30°C, and 35°C (all 50% relative humidity). The participants performed 3 sets of 5 × 10 seconds “all-out” cycle sprints, with 20 seconds of active recovery between sprints and 5 minutes of active recovery between sets (recovery intensity = 120 W). Core temperature, skin temperature, pulse oxygen saturation, heart rate, rating of perceived exertion, and thermal sensation were collected. Results: There were no differences between conditions for peak power, mean power, and total work in each set (P > .05). There were no condition × time interaction effects for any variables tested. The peak core temperature was highest at 30°C (38.06°C [0.31°C]). Overall, the pulse oxygen saturation was higher at 35°C than at 20°C (P < .001; d < 0.8), 25°C (P < .001; d = 1.12 ± 0.54, large), and 30°C (P < .001; d = 0.84 ± 0.53, large). Conclusion: Manipulating air temperature between 20°C and 35°C had no effect on performance or core temperature during a typical RSH session. However, the pulse oxygen saturation was preserved at 35°C, which may not be a desirable outcome for RSH interventions. The application of increased levels of ambient heat may require a different approach if augmenting the RSH stimulus is the desired outcome.